Study on sealing capacity of packing element in compression packer

Author(s):  
Gang Hu ◽  
Guorong Wang ◽  
Ming Li ◽  
Xia He ◽  
Wei Wu
2005 ◽  
Author(s):  
Talal M. Al-Bazali ◽  
Jianguo Zhang ◽  
Martin E. Chenevert ◽  
Mukul Mani Sharma
Keyword(s):  

2021 ◽  
Vol 5 (1) ◽  
pp. 30
Author(s):  
Angelica Bertacci ◽  
Daniele Moro ◽  
Gianfranco Ulian ◽  
Giovanni Valdrè

Recently, endodontic sealers based on injectable bioactive materials were proposed to improve the filling of anatomical irregularities during root canal obturation. In this context, this preliminary work investigated the possibility of realizing a new calcium phosphate-based composite sealer for root canal filling with an optimized composition on setting kinetics and dentin tubules occlusion. Several calcium phosphate/liquid phase mixtures were initially evaluated for their workability, finding two suitable formulations. Both of them contained 66 wt.% of a nano-apatite-based cement (solid powdered phase). The liquid phase (34 wt.%) comprised 13.6% propanediol and 20.4% PEG 1000 (formulation 1), and formulation 2 comprised 27.2% glycerin and 6.8% PEG 200 (formulation 2). Then, these formulations were tested by means of permeability measurements and observation by scanning electron microscopy of treated model dentin samples. Both formulations succeeded in occluding dentinal tubules: the first one was able to create a full-bodied layer on dentin surface and, moreover, to resist, at least to a large extent, against citric acid attack. The second one showed a lower effectiveness after citric acid exposure. The composite compound that better satisfied the overall required characteristics of use, workability and sealing capacity was formulation 1.


2016 ◽  
Vol 95 (3) ◽  
pp. 253-268 ◽  
Author(s):  
Hanneke Verweij ◽  
Geert-Jan Vis ◽  
Elke Imberechts

AbstractThe spatial distribution of porosity and permeability of the Rupel Clay Member is of key importance to evaluate the spatial variation of its sealing capacity and groundwater flow condition. There are only a limited number of measured porosity and permeability data of the Rupel Clay Member in the onshore Netherlands and these data are restricted to shallow depths in the order of tens of metres below surface. Grain sizes measured by laser diffraction and SediGraph® in samples of the Rupel Clay Member taken from boreholes spread across the country were used to generate new porosity and permeability data for the Rupel Clay Member located at greater burial depth. Effective stress and clay content are important parameters in the applied grain-size based calculations of porosity and permeability.The calculation method was first tested on measured data of the Belgian Boom Clay. The test results showed good agreement between calculated permeability and measured hydraulic conductivity for depths exceeding 200m.The spatial variation in lithology, heterogeneity and also burial depth of the Rupel Clay Member in the Netherlands are apparent in the variation of the calculated permeability. The samples from the north of the country consist almost entirely of muds and as a consequence show little lithology-related variation in permeability. The vertical variation in permeability in the more heterogeneous Rupel Clay Member in the southern and east-southeastern part of the country can reach several orders of magnitude due to increased permeability of the coarser-grained layers.


Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 141-170
Author(s):  
Kathryn E. Elphick ◽  
Craig R. Sloss ◽  
Klaus Regenauer-Lieb ◽  
Christoph E. Schrank

Abstract. We analyse deformation bands related to horizontal contraction with an intermittent period of horizontal extension in Miocene turbidites of the Whakataki Formation south of Castlepoint, Wairarapa, North Island, New Zealand. In the Whakataki Formation, three sets of cataclastic deformation bands are identified: (1) normal-sense compactional shear bands (CSBs), (2) reverse-sense CSBs, and (3) reverse-sense shear-enhanced compaction bands (SECBs). During extension, CSBs are associated with normal faults. When propagating through clay-rich interbeds, extensional bands are characterised by clay smear and grain size reduction. During contraction, sandstone-dominated sequences host SECBs, and rare CSBs, that are generally distributed in pervasive patterns. A quantitative spacing analysis shows that most outcrops are characterised by mixed spatial distributions of deformation bands, interpreted as a consequence of overprint due to progressive deformation or distinct multiple generations of deformation bands from different deformation phases. As many deformation bands are parallel to adjacent juvenile normal faults and reverse faults, bands are likely precursors to faults. With progressive deformation, the linkage of distributed deformation bands across sedimentary beds occurs to form through-going faults. During this process, bands associated with the wall-, tip-, and interaction-damage zones overprint earlier distributions resulting in complex spatial patterns. Regularly spaced bands are pervasively distributed when far away from faults. Microstructural analysis shows that all deformation bands form by inelastic pore collapse and grain crushing with an absolute reduction in porosity relative to the host rock between 5 % and 14 %. Hence, deformation bands likely act as fluid flow barriers. Faults and their associated damage zones exhibit a spacing of 9 m on the scale of 10 km and are more commonly observed in areas characterised by higher mudstone-to-sandstone ratios. As a result, extensive clay smear is common in these faults, enhancing the sealing capacity of faults. Therefore, the formation of deformation bands and faults leads to progressive flow compartmentalisation from the scale of 9 m down to about 10 cm – the typical spacing of distributed, regularly spaced deformation bands.


2021 ◽  
Author(s):  
A. Stathopoulou ◽  
A. Del Pino Sanchez ◽  
Q. Fisher ◽  
C. Pontikou ◽  
E. Tripsanas ◽  
...  

2021 ◽  
Author(s):  
Andreas Bauer ◽  
Matteo Loizzo ◽  
Laurent Delabroy ◽  
Tron Golder Kristiansen ◽  
Kristian Klepaker

Abstract It has been demonstrated that creeping shales can form effective hydraulic well barriers. Shale barriers have been used for many years in P&A of wells in Norway. More recently, shale barriers for zonal isolation have also been used in new wells where shale creep was found to occur within days. In some cases, shale creep is activated by a reduction in annulus pressure, in other cases shale creep sets in without any active activation, possibly by time-dependent formation-pressure changes. However, the presence of thixotropic fluids (drilling muds) in the annulus may prevent full closure of the annulus as it requires large pressure differentials to squeeze the fluid out of a microannulus. Furthermore, elastic rebound of an actively activated shale barrier could result in a microannulus and hence a possible leakage pathway. Improved logging technology is needed for identifying shale barriers and the presence of micro-annuli in shale-barrier zones. We use cement bond log data and standard bond logging criteria to evaluate the quality of the shale well barriers (Williams et al., 2009). In addition, in order to detect microannuli on the outside of the casing, a new inversion algorithm for the bond logging data was developed and tested on field data. Later, we had the chance to apply the inversion algorithm to bond-log data obtained in the laboratory with a miniature bond-logging tool inside a cased hollow-cylinder shale-core sample place. It turned out that both the micro-annulus widths and shale velocities determined by the inversion technique were too high. By constraining the shale velocities to more realistic values, the updated microannulus widths were smaller and more consistent with the experimental results. Small microannuli may not cause any measurable leakage along the well, especially if filled with a thixotropic fluid. However, more studies are needed to quantify the impact of microannuli on the sealing capacity of shale barriers.


10.1144/sp482 ◽  
2019 ◽  
Vol 482 (1) ◽  
pp. NP-NP

This Special Publication highlights the importance of clays and clayey material, and their multiple roles, in many national geological disposal facilities for higher activity radioactive wastes. Clays can be both the disposal facility host rock and part of its intrinsic engineered barriers, and may be present in the surrounding geological environment. Clays possess various characteristics that make them high-quality barriers to the migration of radionuclides and chemical contaminants, e.g. very little water movement, diffusive transport, retention capacity, self-sealing capacity, stability over millions of years, homogeneity and lateral continuity.The 20 papers presented in this Special Publication cover a range of topics related to clays in radioactive waste confinement. Aspects of clay characterization and behaviour at various temporal and spatial scales relevant to the confinement of radionuclides in clay are discussed, from phenomenological processes to the overall understanding of the performance and safety of geological disposal facilities.


Sign in / Sign up

Export Citation Format

Share Document