scholarly journals Growth of ultra-dense MoS2 nanosheets on carbon fibers to improve the mechanical and tribological properties of polyimide composites

Friction ◽  
2020 ◽  
Author(s):  
Jin Yang ◽  
Qingfeng Xiao ◽  
Zhe Lin ◽  
Yong Li ◽  
Xiaohua Jia ◽  
...  

AbstractTo enhance the interface bonding of polyimide (PI)/carbon fiber (CF) composites, CFs were functionalized by introducing a polydopamine (PDA) transition layer, whose active groups provide absorption sites for the growth of molybdenum disulfide (MoS2) nanosheets and improve the bonding strength with PI. Uniform and dense MoS2 nanosheets with thicknesses of 30–40 nm on the surface of the PDA@CF were obtained via a subsequent hydrothermal method. As a result, the interface between the CF and the PI matrix becomes more compact with the help of the PDA transition layer and MoS2 nanosheets. This is beneficial in forming PI/CF-MoS2 composites with better thermal stability, higher tensile strength, and enhanced tribological properties. The lubricating and reinforcing effects of the hybrid CF-MoS2 in the PI composite are discussed in detail. The tensile strength of the PI/CF-MoS2 composite increases by 43%, and the friction coefficient and the wear rate reduce by 57% and 77%, respectively, compared to those of the pure PI. These values are higher than those of the PI/CF composites without MoS2 nanosheets. These results indicate that the CF-MoS2 hybrid material can be used as an additive to improve the mechanical and tribological properties of polymers.

2019 ◽  
Vol 32 (6) ◽  
pp. 645-654
Author(s):  
Xiaotao Qiu ◽  
Congli Fu ◽  
Aiqun Gu ◽  
Yang Gao ◽  
Xiuli Wang ◽  
...  

High-performance anti-wear polyetheretherketone/polytetrafluoroethylene (PEEK/PTFE) blends have drawn much attention over the past few years, owing to their wide range of potential applications. However, a convenient and effective method to prepare such blends with superior mechanical and tribological properties is still lacking. In this work, we propose a promising approach that uses melt-processable PTFE (MP PTFE), instead of conventional PTFE, to prepare anti-wear blends. MP PTFE, with melt flow abilities under appropriate conditions, can disperse homogeneously in PEEK, enhancing both the mechanical and tribological properties of the PEEK/PTFE blend. To prove this postulation, in this work, both MP PTFE and commercial PTFE were blended with PEEK, separately, and the effects of PTFE type and content on the tensile and tribological properties of the blends were studied. The results showed that, although the addition of commercial PTFE to PEEK could increase the wear resistance, it decreased the tensile strength of PEEK significantly. Compared to the blends with commercial PTFE, the blends with MP PTFE exhibited better tribological performance and higher tensile strength for PTFE content below 10 wt%. It was confirmed that the better dispersion of MP PTFE in PEEK endowed the blends with higher tensile strength. The surface analysis indicated that the MP PTFE could readily migrate to and enrich the surfaces of the blends. The relatively high PTFE content on the surface favored the formation of tribo-films, enhancing the tribological properties of the blends.


2017 ◽  
Vol 30 (6) ◽  
pp. 657-666 ◽  
Author(s):  
Fangfang Li ◽  
Ying Hu ◽  
Xiaochen Hou ◽  
Xiyu Hu ◽  
Dong Jiang

In this work, the effect of thermal, mechanical, and tribological properties of the blending system of different contents of short carbon fibers (SCFs) on different-viscosity poly-ether-ether-ketone (PEEK) was reported. The composites were manufactured using injection molding technique. Mechanical and tribological properties were measured by the tensile strength, the flexural strength, the coefficient of friction, and the wear rate. The results showed that the wear resistance and mechanical properties of the PEEK with the lower viscosity appeared on a more outstanding level, and experimental results showed that PEEK composites with added 10 wt% SCFs were optimal about the tribological behaviors and mechanical properties of the composites. Furthermore, based on scanning electron microscope inspections, the situation of the friction and worn surface of the material was explained.


2017 ◽  
Vol 39 (S2) ◽  
pp. E869-E882 ◽  
Author(s):  
Fengxia Dong ◽  
Guoliang Hou ◽  
Hao Liu ◽  
Liang Liu ◽  
Fengxiang Cao ◽  
...  

2020 ◽  
Vol 992 ◽  
pp. 745-750
Author(s):  
A.P. Vasilev ◽  
T.S. Struchkova ◽  
A.G. Alekseev

This paper presents the results from the investigation of effect the carbon fibers with tungsten disulfide on the mechanical and tribological properties of PTFE. Is carried out a comparison of mechanical and tribological properties of polymer composites PTFE-based with carbon fibers and PTFE with complex filler (carbon fibers with tungsten disulfide). It is shown that at a content of 8 wt.% CF+1 wt.% WS2 in PTFE, wear resistance increases significantly while maintaining the tensile strength, relative elongation at break and low coefficient of friction at the level of initial PTFE. The results of X-ray analysis and investigation of SEM supramolecular structure and friction surfaces of PTFE and polymer composites are presented. It is shown that the degree of crystallinity of polymer composites increases in comparison with the initial PTFE. The images of scanning electron microscope reveal that particles of tungsten disulfide concentrating on the friction surface is likely responsible to a reduction in the coefficient of friction and increase the wear resistance of PTFE-based polymer composites with complex fillers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhishek Vyas ◽  
Kawaljit Singh Randhawa

Purpose The purpose of this study is to improve the mechanical and tribological performance of polypropylene (PP) material. The influence of hexagonal boron nitride (h-BN) microparticles on mechanical and tribological properties of PP/polyamide 6 (nylon 6) (PA6) blend has been investigated in this paper. Design/methodology/approach Tensile strength, elongation, elastic modulus and Rockwell hardness were measured to identify the mechanical properties of materials. Coefficient of friction (COF) and wear rates of materials were measured with the help of a pin-on-disc tribometer to check the tribological behavior of blend and composite materials. Findings As a result, a small decrease in tensile strength and elongation and improvement in elastic modulus were found for PP/PA6 and PP/PA6/h-BN composite compared to pure PP. The wear rate of PP/PA6 blend and PP/PA6/h-BN composite was found low compared to pure PP matrix, while the COF of PP/PA6 blend was found slightly higher owing to the presence of harder PA6 matrix which was then improved by the h-BN filler reinforcement in PP/PA6/h-BN composite. The addition of PA6 in PP improved the wear rate of PP by 8–24%, whereas the addition of h-BN microparticles improved the wear rate by 22–50% and 24–44% compared to pure PP and PP/PA6 blend, respectively, in different parameters. Originality/value Modulus of elasticity and hardness of pure PP was enhanced by blending with PA6 and was further improved by h-BN fillers. The addition of PA6 in PP improved the wear rate, while h-BN fillers were found effective in reducing the COF by generating smooth thin lubricating film.


2014 ◽  
Vol 59 (2) ◽  
pp. 707-711 ◽  
Author(s):  
M. Łągiewka

Abstract The paper constitutes the culmination of the foregoing investigations concerning the influence of short carbon fibre on the enhancement of AlMg10 alloy properties. The presented work brings forward the results of examinations of mechanical and tribological properties of metal matrix composites (MMCs) based on this alloy. Composites were produced by two methods: either by gravity casting or by squeeze casting in semi-solid state of a composite suspension previously obtained through mixing of its components. The volume fraction of the reinforcing phase varied and took the value of 5, or 10, or finally 15 vol. %. Specimens cut out of the experimental castings were examined with respect both to their mechanical properties, i.e. the tensile strength and unit elongation, and to their tribological behaviour. A series of examinations of the mechanical properties proved a slight increase in tensile strength and a minor decrease in unit elongation of the examined composite materials both for gravity cast and squeeze cast specimens, as compared with the properties of pure matrix alloy. The introduction of short carbon fibre into the matrix alloy resulted also in the increased abrasive wear resistance of the examined composites in comparison to the non-reinforced matrix.


2019 ◽  
Vol 945 ◽  
pp. 327-332 ◽  
Author(s):  
M.A. Markova ◽  
P.N. Petrova

The present paper considers the influence of various technological approaches, based on the application of joint mechanochemical processing of composite components and ultrasonic action, on the performance of composites based on PTFE and discrete carbon fibers of UVIS-AK-P brand. It is established that the use of a certain method of energy deposition on the composite components for the complex enhancement of physical-mechanical and tribological properties depends on the concentration of carbon fibers (CF) in polymer matrix. As a result of the joint mechanoactivation treatment of the components in the planetary mill for 2 minutes, an improvement in physical-mechanical and tribotechnical properties of PTFE with CF concentration of 5 wt.% is observed. An improvement at concentration of 3 wt.% of CF is detected during ultrasonic treatment of PCM components.


Sign in / Sign up

Export Citation Format

Share Document