Influence of h-BN fillers on mechanical and tribological properties of PP/PA6 blend

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhishek Vyas ◽  
Kawaljit Singh Randhawa

Purpose The purpose of this study is to improve the mechanical and tribological performance of polypropylene (PP) material. The influence of hexagonal boron nitride (h-BN) microparticles on mechanical and tribological properties of PP/polyamide 6 (nylon 6) (PA6) blend has been investigated in this paper. Design/methodology/approach Tensile strength, elongation, elastic modulus and Rockwell hardness were measured to identify the mechanical properties of materials. Coefficient of friction (COF) and wear rates of materials were measured with the help of a pin-on-disc tribometer to check the tribological behavior of blend and composite materials. Findings As a result, a small decrease in tensile strength and elongation and improvement in elastic modulus were found for PP/PA6 and PP/PA6/h-BN composite compared to pure PP. The wear rate of PP/PA6 blend and PP/PA6/h-BN composite was found low compared to pure PP matrix, while the COF of PP/PA6 blend was found slightly higher owing to the presence of harder PA6 matrix which was then improved by the h-BN filler reinforcement in PP/PA6/h-BN composite. The addition of PA6 in PP improved the wear rate of PP by 8–24%, whereas the addition of h-BN microparticles improved the wear rate by 22–50% and 24–44% compared to pure PP and PP/PA6 blend, respectively, in different parameters. Originality/value Modulus of elasticity and hardness of pure PP was enhanced by blending with PA6 and was further improved by h-BN fillers. The addition of PA6 in PP improved the wear rate, while h-BN fillers were found effective in reducing the COF by generating smooth thin lubricating film.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose The mechanical and tribological properties of polymers and polymer composites vary with different environmental conditions. This paper aims to review the influence of humidity/water conditions on various polymers and polymer composites' mechanical properties and tribological behaviors. Design/methodology/approach The influence of humidity and water absorption on mechanical and tribological properties of various polymers, fillers and composites has been discussed in this paper. Tensile strength, modulus, yield strength, impact strength, COF and wear rates of polymer composites are compared for different environmental conditions. The interaction between the water molecules and hydrophobic polymers is also represented. Findings Pure polymer matrices show somewhat mixed behavior in humid environments. Absorbed moisture generally plasticizes the epoxies and polyamides and lowers the tensile strength, yield strength and modulus. Wear rates of PVC generally decrease in humid environments, while for polyamides, it increases. Fillers like graphite and boron-based compounds exhibit low COF, while MoS2 particulate fillers exhibit higher COF at high humidity and water conditions. The mechanical properties of fiber-reinforced polymer composites tend to decrease as the rate of humidity increases while the wear rates of fiber-reinforced polymer composites show somewhat mixed behavior. Particulate fillers like metals and advanced ceramics reinforced polymer composites exhibit low COF and wear rates as the rate of humidity increases. Originality/value The mechanical and tribological properties of polymers and polymer composites vary with the humidity value present in the environment. In dry conditions, wear loss is determined by the hardness of the contacting surfaces, which may not effectively work for high humid environments. The tribological performance of composite constituents, i.e. matrix and fillers in humid environments, defines the overall performance of polymer composite in said environments.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 670
Author(s):  
Gifty Oppong Boakye ◽  
Arna María Ormsdóttir ◽  
Baldur Geir Gunnarsson ◽  
Sandeep Irukuvarghula ◽  
Raja Khan ◽  
...  

The selection of electroless nickel-phosphorus plating (ENP) has been inclined towards their properties and advantages with complex geometry applications. These properties include coating uniformity, low surface roughness, low wettability, high hardness, lubricity, and corrosion- and wear-resistance. Materials used in geothermal environments are exposed to harsh conditions such as high loads, temperature, and corrosive fluids, causing corrosion, scaling, erosion and wear of components. To improve the corrosion- and wear-resistance and anti-scaling properties of materials for geothermal environment, a ENP duplex coating with PTFE nanoparticles was developed and deposited on mild steel within the H2020 EU Geo-Coat project. ENP thin adhesive layer and ENP+PTFE top functional layer form the duplex structure of the coating. The objective of this study was to test the mechanical and tribological properties of the developed ENP-PTFE coatings with varying PTFE content. The microstructural, mechanical and tribological properties of the as-deposited coating with increasing PTFE content in the top functional layer in the order: ENP1, ENP2 and ENP3 were evaluated. The results showed maximum wear protection of the substrates at the lowest load; however, increasing load and sliding cycles increased the wear rates, and 79% increased lubrication was recorded for the ENP2 duplex coating. The wear performance of ENP3 greatly improved with a wear resistance of 8.3 × 104 m/mm3 compared to 6.9 × 104 m/mm3 for ENP2 and 2.1 × 104 m/mm3 for ENP1. The results are applicable in developing low friction, hydrophobic or wear-resistive surfaces for geothermal application.


Author(s):  
S Rambabu ◽  
N Ramesh Babu

This article covers the efforts on characterising ice-bonded abrasive polishing tool in terms of the mechanical and tribological properties such as hardness, coefficient of friction, and wear rate. These studies were attempted on the tools prepared at different temperatures ranging from −10 °C to 0 °C with a view to identify the condition suitable to prepare ice-bonded abrasive polishing tool for effective polishing of Ti–6Al–4V alloy specimen. It also presents the methods adopted to determine various properties of ice-bonded abrasive polishing tool. Hardness was estimated from the measured penetration depth of cone shape indenter into the tool, coefficient of friction was determined from the change in power drawn by the motor rotating the tool mould, and wear behaviour of tool was assessed from the melting rate of the tool determined from the change in height of ice-bonded abrasive polishing tool at different stages of polishing. From the results of this study, it is clear that ice-bonded abrasive polishing tool prepared at −4 °C has possessed sufficient hardness, coefficient of friction, and reasonable wear rate suitable for polishing of Ti–6Al–4V specimens. This article also covers the details of low-temperature coolant supply unit developed to prepare the ice-bonded abrasive polishing tool at any desired temperature between 0 °C and −40 °C and thus to maintain it for a long time. Polishing studies with such ice-bonded abrasive polishing tool showed 72% improvement in finish after 90 min of polishing of Ti–6Al–4V specimen with tool, prepared at −4 °C.


2010 ◽  
Vol 1 (1) ◽  
pp. 86-89
Author(s):  
Matyas Ando ◽  
Gabor Kalacska ◽  
T. Czigany

At this article we give a brief review about the additives effects for cast polyamide 6engineering plastics. The natural grade Magnesium catalyzed polyamide 6 has unique mechanicalproperties. Our target is to keep the mechanical and tribological properties with the development ofantistatic and ESD composite version. High conductive very effective to improve the electricalconductivity of magnezium catalized cast PA 6. Only few amount, 0,5% can result good antistaticproperty for the base matrix. Over 3% of additive the surface resistance of the material – performing107 Ω - can reach the ESD (Electrostatic Dissipative) category.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Chong-Chong Mao ◽  
Yu-Feng Li

SrSO4 ceramic was prepared by hot-pressed sintering and its friction behavior was investigated against the Al2O3 ball under the dry sliding condition from room temperature to 800 °C. From room temperature to 400 °C, the tribological properties of SrSO4 ceramic are quite poor with the friction coefficients of 0.65–0.83 and the wear rates of about 10−3 mm3/Nm. With the testing temperature increasing to 600 °C and 800 °C, a brittle to ductile transition of SrSO4 takes place because of the activated slip systems. The friction coefficient and wear rate of SrSO4 ceramic also obviously decrease to 0.37 and about 10−4 mm3/Nm at 800 °C. The significant improvement of the tribological properties is ascribed to the formation of a smooth and continuous SrSO4 lubricating film with excellent ductility and low shear strength at elevated temperature. SrSO4 is considered to be a potential candidate for high-temperature solid lubricant with excellent lubricity.


Friction ◽  
2020 ◽  
Author(s):  
Jin Yang ◽  
Qingfeng Xiao ◽  
Zhe Lin ◽  
Yong Li ◽  
Xiaohua Jia ◽  
...  

AbstractTo enhance the interface bonding of polyimide (PI)/carbon fiber (CF) composites, CFs were functionalized by introducing a polydopamine (PDA) transition layer, whose active groups provide absorption sites for the growth of molybdenum disulfide (MoS2) nanosheets and improve the bonding strength with PI. Uniform and dense MoS2 nanosheets with thicknesses of 30–40 nm on the surface of the PDA@CF were obtained via a subsequent hydrothermal method. As a result, the interface between the CF and the PI matrix becomes more compact with the help of the PDA transition layer and MoS2 nanosheets. This is beneficial in forming PI/CF-MoS2 composites with better thermal stability, higher tensile strength, and enhanced tribological properties. The lubricating and reinforcing effects of the hybrid CF-MoS2 in the PI composite are discussed in detail. The tensile strength of the PI/CF-MoS2 composite increases by 43%, and the friction coefficient and the wear rate reduce by 57% and 77%, respectively, compared to those of the pure PI. These values are higher than those of the PI/CF composites without MoS2 nanosheets. These results indicate that the CF-MoS2 hybrid material can be used as an additive to improve the mechanical and tribological properties of polymers.


2019 ◽  
Vol 30 (6) ◽  
pp. 2833-2843 ◽  
Author(s):  
Adam Gnatowski ◽  
Agnieszka Kijo-Kleczkowska ◽  
Rafał Gołębski ◽  
Kamil Mirek

Purpose The issues concerning the prediction of changes in properties of polymer materials as a result of adding reinforcing fibers are currently widely discussed in the field of polymer material processing. This paper aims to present strengths and weaknesses of composites based on polymer materials strengthened with fibers. It touches upon composite cracking at the junction of a matrix and its reinforcement. It also discusses the analysis of changes in properties of chosen materials as a result of adding reinforcing fibers. The paper shows improvement in the strength of polymer materials with fiber addition, which is extremely important, because these types of composites are used in the aerospace, automotive and electrical engineering industries. Design/methodology/approach Comparing the properties of matrix strength with fiber properties is practically impossible. Thus, fiber tensile strength and composite tensile strength shall be compared (González et al., 2011): tensile (glass fiber GF) = 900 [MPa], elongation ΔL≈ 0; yield point (polyamide 66) = 70−90 [MPa], elongation Δ[%] = 3,5-18; tensile (polyamide 66 + 15% GF) = 80-125 [MPa], elongation Δ[%] ≈ 0; tensile (polyamide 66 + 30% GF) = 190 [MPa], elongation Δ[%] ≈ 0; yield point (polyamide 6) = 45-85 [MPa], elongation Δ[%] = 4-15; tensile (polyamide 6 + 15% GF) = 80-125 [MPa], elongation Δ[%] ≈ 0; tensile (polyamide 6 + 30% GF) = 95-130 [MPa] elongation Δ[%] ≈ 0. Comparison of properties of selected polymers and composites is presented in Tables 1−10 and Figures 1 and 2. The measurement methodology is presented in detail in the paper Kula et al. (2018). The increase in fiber content (to the extent discussed) leads to the increase in yield strength stresses and hardness. The value of yield strength for polyamide with the addition of fiberglass grows gradually with the increase in fiber content. The hardness of the composite of polyamide with glass balls increases together with the increase in reinforcement content. The changes of these values do not occur linearly. The increase in fiber content has a slight impact on density change (the increase of about 1 g/mm3 per 10 per cent). Findings The use of polymers as a matrix allows to give composites features such as: lightness, corrosion resistance, damping ability, good electrical insulation and thermal and easy shaping. Polymers used as a matrix perform the following functions in composites: give the desired shape to the products, allow transferring loads to fibers, shape thermal, chemical and flammable properties of composites and increase the possibilities of making composites. Fiber-reinforced polymer composites are the effect of searching for new construction materials. Glass fibers show tensile strength, stiffness and brittleness, while the polymer matrix has viscoelastic properties. Glass fibers have a uniform shape and dimensions. Fiber-reinforced composites are therefore used to increase strength and stiffness of materials. Polymers have low tensile strength, exhibit high deformability. Polymers reinforced by glass fiber have a high modulus of elasticity and therefore provide better the mechanical properties of the material. Composites with glass fibers do not exhibit deformations in front of cracking. An increase in the content of glass fiber in composites increases the tensile strength of the material. Polymers reinforced by glass fiber are currently one of the most important construction materials and are widely used in the aerospace, automotive and electro-technical industries. Originality/value The paper presents the test results for polyethylene composites with 25 per cent and 50 per cent filler coming from recycled car carpets of various car makes. The tests included using differential scanning calorimetry, testing material hardness, material tensile strength and their dynamic mechanical properties.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Feng ◽  
Lei Yin ◽  
Yanfeng Han ◽  
Jiaxu Wang ◽  
Ke Xiao ◽  
...  

Purpose This paper aims to explore the possibility of converting the nitrile butadiene rubber (NBR) water-lubricated bearing material into a self-lubricating bearing material by the action of polytetrafluoroethylene (PTFE) particles and water lubrication. Design/methodology/approach A group of experimental studies was carried out on a ring-on-block friction test. The physical properties, tribological properties and interface structure of PTFE-NBR self-lubricating composites filled with different percentages of PTFE particles were investigated. Findings The experimental results indicated that the reduction in friction and wear is a result of the formation of the lubricating film on the surface of the composites. The lubricating film was formed of a large amount of PTFE particles continuously supplied under water lubrication conditions and the PTFE particles here can greatly enhance the load capacity and lubrication performance. Originality/value In this study, the tribological properties of PTFE particles added to the NBR water-lubricated bearing materials under water lubrication were investigated experimentally, and the research was carried out by a ring-on-block friction test. It is believed that this study can provide some guidance for the application of PTFE-NBR self-lubricating. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2020-0187/


2019 ◽  
Vol 32 (6) ◽  
pp. 645-654
Author(s):  
Xiaotao Qiu ◽  
Congli Fu ◽  
Aiqun Gu ◽  
Yang Gao ◽  
Xiuli Wang ◽  
...  

High-performance anti-wear polyetheretherketone/polytetrafluoroethylene (PEEK/PTFE) blends have drawn much attention over the past few years, owing to their wide range of potential applications. However, a convenient and effective method to prepare such blends with superior mechanical and tribological properties is still lacking. In this work, we propose a promising approach that uses melt-processable PTFE (MP PTFE), instead of conventional PTFE, to prepare anti-wear blends. MP PTFE, with melt flow abilities under appropriate conditions, can disperse homogeneously in PEEK, enhancing both the mechanical and tribological properties of the PEEK/PTFE blend. To prove this postulation, in this work, both MP PTFE and commercial PTFE were blended with PEEK, separately, and the effects of PTFE type and content on the tensile and tribological properties of the blends were studied. The results showed that, although the addition of commercial PTFE to PEEK could increase the wear resistance, it decreased the tensile strength of PEEK significantly. Compared to the blends with commercial PTFE, the blends with MP PTFE exhibited better tribological performance and higher tensile strength for PTFE content below 10 wt%. It was confirmed that the better dispersion of MP PTFE in PEEK endowed the blends with higher tensile strength. The surface analysis indicated that the MP PTFE could readily migrate to and enrich the surfaces of the blends. The relatively high PTFE content on the surface favored the formation of tribo-films, enhancing the tribological properties of the blends.


Sign in / Sign up

Export Citation Format

Share Document