scholarly journals The Future of Midlatitude Cyclones

2019 ◽  
Vol 5 (4) ◽  
pp. 407-420 ◽  
Author(s):  
Jennifer L. Catto ◽  
Duncan Ackerley ◽  
James F. Booth ◽  
Adrian J. Champion ◽  
Brian A. Colle ◽  
...  

Abstract Purpose of Review This review brings together recent research on the structure, characteristics, dynamics, and impacts of extratropical cyclones in the future. It draws on research using idealized models and complex climate simulations, to evaluate what is known and unknown about these future changes. Recent Findings There are interacting processes that contribute to the uncertainties in future extratropical cyclone changes, e.g., changes in the horizontal and vertical structure of the atmosphere and increasing moisture content due to rising temperatures. Summary While precipitation intensity will most likely increase, along with associated increased latent heating, it is unclear to what extent and for which particular climate conditions this will feedback to increase the intensity of the cyclones. Future research could focus on bridging the gap between idealized models and complex climate models, as well as better understanding of the regional impacts of future changes in extratropical cyclones.

2016 ◽  
Vol 48 (5) ◽  
pp. 1327-1342 ◽  
Author(s):  
Spyridon Paparrizos ◽  
Andreas Matzarakis

Assessment of future variations of streamflow is essential for research regarding climate and climate change. This study is focused on three agricultural areas widespread in Greece and aims to assess the future response of annual and seasonal streamflow and its impacts on the hydrological regime, in combination with other fundamental aspects of the hydrological cycle in areas with different climate classification. ArcSWAT ArcGIS extension was used to simulate the future responses of streamflow. Future meteorological data were obtained from various regional climate models, and analysed for the periods 2021–2050 and 2071–2100. In all the examined areas, streamflow is expected to be reduced. Areas characterized by continental climate will face minor reductions by the mid-century that will become very intense by the end and thus these areas will become more resistant to future changes. Autumn season will face the strongest reductions. Areas characterized by Mediterranean conditions will be very vulnerable in terms of future climate change and winter runoff will face the most significant decreases. Reduced precipitation is the main reason for decreased streamflow. High values of actual evapotranspiration by the end of the century will act as an inhibitor towards reduced runoff and partly counterbalance the water losses.


2013 ◽  
Vol 634-638 ◽  
pp. 1597-1601
Author(s):  
Hui Juan Li ◽  
Hong Wei Yan ◽  
Hui Shan Lu ◽  
Qiang Gao

In recent years, due to the ultra-fine powder is widely used in various industries of the national economy. And corresponding to domestic and foreign have developed a variety of ultra-fine grinding equipment, including stirring mill, which is considered the most potential for development of an ultra-fine grinding equipment. This is brought to its unique working principle and structure characteristics. This paper introduces the stirred mill work principle as well as the history of the development of the stirred mill both at home and abroad, which analysis of the structural characteristics of stirred mill. And it puts forward the directions of the stirred mill in the future research.


2021 ◽  
Author(s):  
Miguel Perpina ◽  
Vincent Noel ◽  
Helene Chepfer ◽  
Rodrigo Guzman ◽  
Artem Feofilov

<p><span>Climate models predict a weakening of the tropical atmospheric circulation, more specifically a slowdown of Hadley and Walker circulations. Many climate models predict that global warming will have a major impact on cloud properties, including their geographic and vertical distribution. Climate feedbacks from clouds, which amplify warming when positive, are today the main source of uncertainty in climate forecasts. Tropical clouds play a key role in the redistribution of solar energy and their evolution will likely affect climate. Therefore, it is crucial to better understand how tropical clouds will evolve in a changing climate. Among cloud properties, the vertical distribution is sensitive to climate change. Active sensors integrated into satellites, such as CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization), make it possible to obtain a detailed vertical distribution of clouds. CALIOP measurements and calibration are more stable over time and more precise than passive remote sensing satellite detectors. CALIOP observations can be simulated in the atmospheric conditions predicted by climate models using lidar simulators such as COSP (</span><span>CFMIP Observation Simulator Package). Moreover, </span><span>cloud properties directly drive the Cloud Radiative Effect (CRE). Understanding how models predict cloud vertical distribution will evolve in the future has implications for how models predict the Cloud Radiative Effect (CRE) at the Top of the Atmosphere (TOA) will evolve in the future. </span></p><p><span>The purpose of our study is to compare, firstly, based on satellite observations (GOCCP) and reanalyzes (ERA5), we will establish the relationship between atmospheric dynamic circulation, opaque cloud properties and TOA CRE. Then, we will compare this observed relationship with the one found in climate model simulations of current climate conditions (CESM1 and IPSL-CM6). Finally, we will identify how model biases in present climate conditions influence the cloud feedback spread between models in a warmer climate.</span></p>


2014 ◽  
Vol 10 (6) ◽  
pp. 4425-4468
Author(s):  
D. Zanchettin ◽  
O. Bothe ◽  
F. Lehner ◽  
P. Ortega ◽  
C. C. Raible ◽  
...  

Abstract. Reconstructions of past climate behavior often describe prominent anomalous periods that are not necessarily captured in climate simulations. Here, we illustrate the contrast between an interdecadal strong positive phase of the winter Pacific/North American pattern (PNA) in the early 19th century that is described by a PNA reconstruction based on tree-rings from northwestern North America, and a slight tendency towards negative winter PNA anomalies during the same period in an ensemble of state-of-the-art coupled climate simulations. Additionally, a pseudo-proxy investigation with the same simulation ensemble allows assessing the robustness of PNA reconstructions using solely geophysical predictors from northwestern North America for the last millennium. The reconstructed early-19th-century positive PNA anomaly emerges as a potentially reliable feature, although it is subject to a number of sources of uncertainty and potential deficiencies. The pseudo-reconstructions demonstrate that the early-19th-century discrepancy between reconstructed and simulated PNA does not stem from the reconstruction process. Instead, reconstructed and simulated features of the early-19th-century PNA can be reconciled by interpreting the reconstructed evolution during this time as an expression of internal climate variability, hence unlikely to be reproduced in its exact temporal occurrence by a small ensemble of climate simulations. However, firm attribution of the reconstructed PNA anomaly is hampered by known limitations and deficiencies of coupled climate models and uncertainties in the early-19th-century external forcing and background climate conditions.


2021 ◽  
Author(s):  
Sébastien Marinier ◽  
Julie M. Thériault ◽  
Kyoko Ikeda

Abstract Freezing precipitation have major consequences for ground and air transportation, the health of citizens, and power networks. Previous studies using coarse resolution climate models have shown a northward migration of freezing rain in the future. Increased model resolution can better define local topography leading to improved representation of conditions that are favorable for freezing rain. The goal of this study is to examine the climatology and characteristics of future freezing rain events using very-high resolution climate models. Historical and pseudo-global warming simulations with a 4-km horizontal resolution were used and compared with available observations. Simulations revealed a northerly shift of freezing rain occurrence, and an increase in the winter. Freezing rain was still shown to occur in the Saint-Lawrence River Valley in a warmer climate, primarily due to stronger wind channeling. Up to 50% of the future freezing rain events also occurred in the historical simulation within 12 h of each other. In northern Maine, they are typically shorter than 6 h in current climate and longer than 6 h in warmer conditions due to the timing of low-pressure systems. The occurrence of freezing rain also locally increases slightly north of Québec City in a warmer climate because of freezing rain that is produced by warm rain processes. Overall, the study shows that high-resolution, regional climate simulations are needed to study freezing rain events in warmer climate conditions, because high resolutions better define the atmospheric conditions aloft and near the surface that strongly influence these events.


2015 ◽  
Vol 12 (12) ◽  
pp. 13069-13122 ◽  
Author(s):  
G. Laaha ◽  
J. Parajka ◽  
A. Viglione ◽  
D. Koffler ◽  
K. Haslinger ◽  
...  

Abstract. The objective of this paper is to present a new strategy for assessing climate impacts on low flows and droughts. The strategy is termed a three-pillar approach as it combines different sources of information. The first pillar, trend extrapolation, exploits the temporal patterns of observed low flows and extends them into the future. The second pillar, rainfall–runoff projections uses precipitation and temperature scenarios from climate models as an input to rainfall–runoff models to project future low flows. The third pillar, stochastic projections, exploits the temporal patterns of observed precipitation and air temperature and extends them into the future to drive rainfall–runoff projections. These pieces of information are combined by expert judgement based on a synoptic view of data and model outputs, taking the respective uncertainties of the methods into account. The viability of the approach is demonstrated for four example catchments from Austria that represent typical climate conditions in Central Europe. The projections differ in terms of their signs and magnitudes. The degree to which the methods agree depends on the regional climate and the dominant low flow seasonality. In the Alpine region where winter low flows dominate, trend projections and climate scenarios yield consistent projections of increasing low flows, although of different magnitudes. In the region north of the Alps, consistently small changes are projected by all methods. In the regions in the South and Southeast, more pronounced and mostly decreasing trends are projected but there is disagreement in the magnitudes of the projected changes. These results suggest that conclusions drawn from only one pillar of information would be highly uncertain. The three-pillar approach offers a systematic framework of combining different sources of information aiming at more robust projections than obtained from each pillar alone.


2019 ◽  
Vol 12 ◽  
pp. 01013 ◽  
Author(s):  
D. Blanco-Ward ◽  
A. Ribeiro ◽  
D. Barreales ◽  
J. Castro ◽  
J. Verdial ◽  
...  

In this work, bioclimatic parameters and indices relevant to the grapevine are estimated for the years 2000 (recent-pat), 2049 (medium-term future) and 2097 (long-term future), based on very high resolution (1 km × 1 km) MPI-WRF RCP8.5 climate simulations. The selected parameters and indices are the mean temperature during the grapevine growing season period (April to October, Tgs), the cumulative rainfall during the grapevine growing season period (Pgs), the Winkler index (WI), the Huglin heliothermic index (HI), the night cold index (CI) and the dryness index (DI). In general, a significant increase in mean temperature during the grapevine growing season period is observed, together with a significant decrease in precipitation. The recent-past WI is associated with the production of high-quality wines; the higher values predicted for the future represent intensive production of wines of intermediate quality. The HI shows the passage of a grapevine growing region considered as temperate-warm to a warm category of higher helio-thermicity. The recent-past CI indicates very cool conditions (associated with quality wines), while in the future there is a tendency for temperate or warmer nights. Finally, DI indicates an increase in water stress considered already high under the recent-past climate conditions. These results point to an increased climatic stress on the Douro region wine production and increased vulnerability of its vine varieties, providing evidence to support strategies aimed to preserve the high-quality wines in the region and their typicality in a sustainable way.


2008 ◽  
Vol 21 (11) ◽  
pp. 2540-2557 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Enrique Sánchez

Abstract This paper analyzes the changes in the precipitation climatologies of Europe for the periods 1960–90 and 2070–2100 using a heterogeneous set of regional climate models (RCMs). The authors used the Climatic Research Unit (CRU) database to define a precipitation climatology for current climate conditions (1960–90), then compare the estimates with the RCMs’ simulations for the same period using spectral analysis. After the authors evaluated the performance of the models compared with validation data for current climate, they calculated the future climate spectra (2070–2100). Changes in the future climate have been evaluated in terms of differences in the phase and amplitude of the annual cycle with respect to present conditions. The results show that models provide consistent results and that under the A2 scenario (increased greenhouse gases conditions) precipitation climatologies in Europe are expected to suffer noticeable changes, the most important being a strengthening of the annual cycle in most of the Atlantic coastal areas of the continent. While total amounts of rainfall might undergo little change, the consequences of changes in the seasonal distribution of precipitation will strongly affect both ecosystems and human activities. Differences were also found in the probability distribution function (pdf) of precipitation, indicating an overall increase in the frequency of precipitation-related hazards in Europe.


Crisis ◽  
2017 ◽  
Vol 38 (3) ◽  
pp. 202-206 ◽  
Author(s):  
Karl Andriessen ◽  
Dolores Angela Castelli Dransart ◽  
Julie Cerel ◽  
Myfanwy Maple

Abstract. Background: Suicide can have a lasting impact on the social life as well as the physical and mental health of the bereaved. Targeted research is needed to better understand the nature of suicide bereavement and the effectiveness of support. Aims: To take stock of ongoing studies, and to inquire about future research priorities regarding suicide bereavement and postvention. Method: In March 2015, an online survey was widely disseminated in the suicidology community. Results: The questionnaire was accessed 77 times, and 22 records were included in the analysis. The respondents provided valuable information regarding current research projects and recommendations for the future. Limitations: Bearing in mind the modest number of replies, all from respondents in Westernized countries, it is not known how representative the findings are. Conclusion: The survey generated three strategies for future postvention research: increase intercultural collaboration, increase theory-driven research, and build bonds between research and practice. Future surveys should include experiences with obtaining research grants and ethical approval for postvention studies.


Sign in / Sign up

Export Citation Format

Share Document