scholarly journals Stochastic Travelling Advisor Problem Simulation with a Case Study: A Novel Binary Gaining-Sharing Knowledge-Based Optimization Algorithm

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Said Ali Hassan ◽  
Yousra Mohamed Ayman ◽  
Khalid Alnowibet ◽  
Prachi Agrawal ◽  
Ali Wagdy Mohamed

This article proposes a new problem which is called the Stochastic Travelling Advisor Problem (STAP) in network optimization, and it is defined for an advisory group who wants to choose a subset of candidate workplaces comprising the most profitable route within the time limit of day working hours. A nonlinear binary mathematical model is formulated and a real application case study in the occupational health and safety field is presented. The problem has a stochastic nature in travelling and advising times since the deterministic models are not appropriate for such real-life problems. The STAP is handled by proposing suitable probability distributions for the time parameters and simulating the problem under such conditions. Many application problems like this one are formulated as nonlinear binary programming models which are hard to be solved using exact algorithms especially in large dimensions. A novel binary version of the recently developed gaining-sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems is given. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. The binary version of GSK (BGSK) depends mainly on two stages that enable BGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. The generated simulation runs of the example are solved using the BGSK, and the output histograms and the best-fitted distributions for the total profit and for the route length are obtained.

Author(s):  
Prachi Agrawal ◽  
Talari Ganesh ◽  
Ali Wagdy Mohamed

AbstractThis article proposes a novel binary version of recently developed Gaining Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. A binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (NBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable NBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Moreover, to enhance the performance of NBGSK and prevent the solutions from trapping into local optima, NBGSK with population size reduction (PR-NBGSK) is introduced. It decreases the population size gradually with a linear function. The proposed NBGSK and PR-NBGSK applied to set of knapsack instances with small and large dimensions, which shows that NBGSK and PR-NBGSK are more efficient and effective in terms of convergence, robustness, and accuracy.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This article proposes a novel binary version of recently developed Gaining-Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems is proposed. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. Discrete Binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (DBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable DBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space.An improved scheduling of the technical counselling process for utilization of the electricity from solar energy power stations is introduced. The scheduling aims at achieving the best utilization of the available day time for the counselling group,n this regard,a new application problem is presented, which is called a Travelling Counselling Problem (TCP).A Nonlinear Binary Model is introduced with a real application


2021 ◽  
Author(s):  
Hala A. Omar ◽  
Mohammed El-Shorbagy

Abstract Grasshopper optimization algorithm (GOA) is one of the promising optimization algorithms for optimization problems. But, it has the main drawback of trapping into a local minimum, which causes slow convergence or inability to detect a solution. Several modifications and combinations have been proposed to overcome this problem. In this paper, a modified grasshopper optimization algorithm (MGOA) based genetic algorithm (GA) is proposed to overcome this problem. Modifications rely on certain mathematical assumptions and varying the domain of the Cmax control parameter to escape from the local minimum and move the search process to a new improved point. Parameter C is one of the most important parameters in GOA where it balances the exploration and exploitation of the search space. These modifications aim to lead to speed up the convergence rate by reducing the repeated solutions and the number of iterations. The proposed algorithm will be tested on the 19 main test functions to verify and investigate the influence of the proposed modifications. In addition, the algorithm will be applied to solve 5 different cases of nonlinear systems with different types of dimensions and regularity to show the reliability and efficiency of the proposed algorithm. Good results were achieved compared to the original GOA.


Author(s):  
Esam Taha Yassen ◽  
Alaa Abdulkhar Jihad ◽  
Sudad H. Abed

<span>Over the last decade, many nature-inspired algorithms have been received considerable attention among practitioners and researchers to handle several optimization problems. Lion optimization algorithm (LA) is inspired by a distinctive lifestyle of lions and their collective behavior in their social groups. LA has been presented as a powerful optimization algorithm to solve various optimization problems. In this paper, the LA is proposed to investigate its performance in solving one of the most popular and widespread real-life optimization problems called team orienteering problem with time windows (TOPTW). However, as any population-based metaheuristic, the LA is very efficient in exploring the search space, but inefficient in exploiting it. So, this paper proposes enhancing LA to tackle the TOPTW by utilizing its strong ability to explore the search space and improving its exploitation ability. This enhancement is achieved via improving a process of territorial defense to generate a trespass strong nomadic lion to prevail a pride by fighting its males. As a result of this improving process, an enhanced LA (ILA) emerged. The obtained solutions have been compared with the best known and standard results obtained in the former studies. The conducted experimental test verifies the effectiveness of the ILA in solving the TOPTW as it obtained a very competitive results compared to the LA and the state-of-the-art methods across all tested instances.</span>


2018 ◽  
Vol 1 (1) ◽  
pp. 15-26
Author(s):  
D B Fatemeh ◽  
C K Loo ◽  
G Kanagaraj ◽  
S G Ponnambalam

Most real-life optimization problems involve constraints which require a specialized mechanism to deal with them. The presence of constraints imposes additional challenges to the researchers motivated towards the development of new algorithm with efficient constraint handling mechanism. This paper attempts the suitability of newly developed hybrid algorithm, Shuffled Complex Evolution with Quantum Particle Swarm Optimization abbreviated as SP-QPSO, extended specifically designed for solving constrained optimization problems. The incorporation of adaptive penalty method guides the solutions to the feasible regions of the search space by computing the violation of each one. Further, the algorithm’s performance is improved by Centroidal Voronoi Tessellations method of point initialization promise to visit the entire search space. The effectiveness and the performance of SP-QPSO are examined by solving a broad set of ten benchmark functions and four engineering case study problems taken from the literature. The experimental results show that the hybrid version of SP-QPSO algorithm is not only overcome the shortcomings of the original algorithms but also outperformed most state-of-the-art algorithms, in terms of searching efficiency and computational time.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This article proposes a novel binary version of recently developed Gaining-Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems is proposed. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. Discrete Binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (DBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable DBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space.An improved scheduling of the technical counselling process for utilization of the electricity from solar energy power stations is introduced. The scheduling aims at achieving the best utilization of the available day time for the counselling group,n this regard,a new application problem is presented, which is called a Travelling Counselling Problem (TCP).A Nonlinear Binary Model is introduced with a real application


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

GSK algorithm is based on the concept of how humans acquire and share knowledge through their lifespan. Discrete Binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (DBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable BGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Besides, one of these practical applications is to optimally schedule the flights for residual stranded citizens due to COVID-19. The problem is defined for a decision maker who wants to schedule a multiple stepped trip for a subset of candidate airports to return the maximum number of residuals of stranded citizens remaining in listed airports while comprising the minimization of the total travelled distances for a carrying airplane. A nonlinear binary mathematical programming model for the problem is introduced with a real application case study, the case study is solved using (DBGSK).


2021 ◽  
Vol 11 (3) ◽  
pp. 1286 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ali Dehghani ◽  
Om P. Malik ◽  
Ruben Morales-Menendez ◽  
...  

One of the most powerful tools for solving optimization problems is optimization algorithms (inspired by nature) based on populations. These algorithms provide a solution to a problem by randomly searching in the search space. The design’s central idea is derived from various natural phenomena, the behavior and living conditions of living organisms, laws of physics, etc. A new population-based optimization algorithm called the Binary Spring Search Algorithm (BSSA) is introduced to solve optimization problems. BSSA is an algorithm based on a simulation of the famous Hooke’s law (physics) for the traditional weights and springs system. In this proposal, the population comprises weights that are connected by unique springs. The mathematical modeling of the proposed algorithm is presented to be used to achieve solutions to optimization problems. The results were thoroughly validated in different unimodal and multimodal functions; additionally, the BSSA was compared with high-performance algorithms: binary grasshopper optimization algorithm, binary dragonfly algorithm, binary bat algorithm, binary gravitational search algorithm, binary particle swarm optimization, and binary genetic algorithm. The results show the superiority of the BSSA. The results of the Friedman test corroborate that the BSSA is more competitive.


2004 ◽  
Vol 03 (01) ◽  
pp. 53-68 ◽  
Author(s):  
A. S. MILANI ◽  
C. EL-LAHHAM ◽  
J. A. NEMES

Real life engineering problems usually require the satisfaction of different, potentially conflicting criteria. Design optimization, on the other hand, based on the conventional Taguchi method cannot accommodate more than one response. However, by the use of the overall evaluation criterion approach, the method can be applied to multiple-criteria optimization problems. This paper presents the use of different utility function methods as well as a multiple attribute decision-making model in the multiple-criteria optimization of a cold heading process. Different aspects of each method are discussed and compared.


Author(s):  
Koot Kotze ◽  
Helene-Mari van der Westhuizen ◽  
Eldi van Loggerenberg ◽  
Farah Jawitz ◽  
Rodney Ehrlich

Extended shifts are common in medical practice. This is when doctors are required to work continuously for more than 16 h, with little or no rest, often without a maximum limit. These shifts have been a part of medical practice for more than a century. Research on the impact of fatigue presents compelling evidence that extended shifts increase the risk of harm to patients and practitioners. However, where the number of doctors is limited and their workloads are not easily reduced, there are numerous barriers to reform. Some of these include a perceived lack of safer alternatives, concerns about continuity of care, trainee education, and doctors’ preferences. As such, working hour reorganisation has been contentious globally. South Africa, a middle-income country where extended shifts are unregulated for most doctors, offers a useful case study of reform efforts. The South African Safe Working Hours campaign has promoted working hour reorganization through multi-level advocacy efforts, although extended shifts remain common. We propose that extended shifts should be regarded as an occupational hazard under health and safety legislation. We suggest options for managing the risks of extended shifts by adapting the hierarchy of controls for occupational hazards. Despite the challenges reform pose, the practice of unregulated extended shifts should not continue.


Sign in / Sign up

Export Citation Format

Share Document