scholarly journals Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Dongping Xue ◽  
Huicong Xia ◽  
Wenfu Yan ◽  
Jianan Zhang ◽  
Shichun Mu

Abstract Electrocatalytic carbon dioxide (CO2) reduction (ECR) has become one of the main methods to close the broken carbon cycle and temporarily store renewable energy, but there are still some problems such as poor stability, low activity, and selectivity. While the most promising strategy to improve ECR activity is to develop electrocatalysts with low cost, high activity, and long-term stability. Recently, defective carbon-based nanomaterials have attracted extensive attention due to the unbalanced electron distribution and electronic structural distortion caused by the defects on the carbon materials. Here, the present review mainly summarizes the latest research progress of the construction of the diverse types of defects (intrinsic carbon defects, heteroatom doping defects, metal atomic sites, and edges detects) for carbon materials in ECR, and unveil the structure–activity relationship and its catalytic mechanism. The current challenges and opportunities faced by high-performance carbon materials in ECR are discussed, as well as possible future solutions. It can be believed that this review can provide some inspiration for the future of development of high-performance ECR catalysts.

2021 ◽  
Vol 02 ◽  
Author(s):  
Yonghui Zhang ◽  
Yatong Shi ◽  
Shiyu Xie ◽  
Mingming Liu ◽  
Junli Chen ◽  
...  

: Photocatalysis is a feasible technology to solve energy shortage and environmental pollution by using solar energy. Semiconductor photocatalysts with low cost, high stability and environmental friendliness are demonstrated advantages for the production of solar fuel, CO2 reduction, and degradation of pollutants. Among them, Cu2O presents numerous potential for photocatalysis because of its narrow bandgap and high activity under visible light. However, the rapid recombination of photoinduced electron-hole pairs and the instability of Cu2O under light irradiation limit its photocatalytic performance. In order to solve the above issues, researchers prefer to incorporate Cu2O with n-type semiconductors to design p-n heterojunction composites, thus regulating the band structure, promoting the separation and transfer of electrons and holes, and accelerating the redox reaction onto the surface. In this manuscript, the preparation methods of Cu2O/n-type semiconductor composites such as hydrothermal method, electrodeposition method, and in situ method are concluded, the photocatalytic applications including CO2 reduction, hydrogen production, and degradation are presented, and the catalytic mechanism like Z-scheme, p-n heterojunction, etc. are discussed, respectively. This review also proposes that there are still challenges in broadening the photocatalytic application of Cu2O/n-type semiconductor composites.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8628-8635
Author(s):  
Chang Ki Kim ◽  
Jung-Min Ji ◽  
M. Aftabuzzaman ◽  
Hwan Kyu Kim

The incorporation of the Te element into nitrogen-doped carbon-based nanomaterials is a good strategy to improve the capacitive performance of carbon materials and the incorporation of two types of atoms improves the overall capacitive performance of the materials due to a synergetic effect.


Inorganics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 69 ◽  
Author(s):  
Yichao Cai ◽  
Yunpeng Hou ◽  
Yong Lu ◽  
Jun Chen

Rechargeable aprotic lithium-oxygen (Li-O2) batteries have attracted significant interest in recent years owing to their ultrahigh theoretical capacity, low cost, and environmental friendliness. However, the further development of Li-O2 batteries is hindered by some ineluctable issues, such as severe parasitic reactions, low energy efficiency, poor rate capability, short cycling life and potential safety hazards, which mainly stem from the high charging overpotential in the positive electrode side. Thus, it is of great significance to develop high-performance catalysts for the positive electrode in order to address these issues and to boost the commercialization of Li-O2 batteries. In this review, three main categories of catalyst for the positive electrode of Li-O2 batteries, including carbon materials, noble metals and their oxides, and transition metals and their oxides, are systematically summarized and discussed. We not only focus on the electrochemical performance of batteries, but also pay more attention to understanding the catalytic mechanism of these catalysts for the positive electrode. In closing, opportunities for the design of better catalysts for the positive electrode of high-performance Li-O2 batteries are discussed.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2263 ◽  
Author(s):  
Xiaoning Wang ◽  
Dan Wu ◽  
Xinhui Song ◽  
Wei Du ◽  
Xiangjin Zhao ◽  
...  

Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 680 ◽  
Author(s):  
Alexandra Virginia Bounegru ◽  
Constantin Apetrei

This paper aims to revise research on carbonaceous nanomaterials used in developing sensors. In general, nanomaterials are known to be useful in developing high-performance sensors due to their unique physical and chemical properties. Thus, descriptions were made for various structural features, properties, and manner of functionalization of carbon-based nanomaterials used in electrochemical sensors. Of the commonly used technologies in manufacturing electrochemical sensors, the screen-printing technique was described, highlighting the advantages of this type of device. In addition, an analysis was performed in point of the various applications of carbon-based nanomaterial sensors to detect analytes of interest in different sample types.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1268 ◽  
Author(s):  
Álvaro Torrinha ◽  
Thiago M. B. F. Oliveira ◽  
Francisco W.P. Ribeiro ◽  
Adriana N. Correia ◽  
Pedro Lima-Neto ◽  
...  

Pharmaceuticals, as a contaminant of emergent concern, are being released uncontrollably into the environment potentially causing hazardous effects to aquatic ecosystems and consequently to human health. In the absence of well-established monitoring programs, one can only imagine the full extent of this problem and so there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. Carbon-based nanomaterials are the most used nanostructures in (bio)sensors construction attributed to their facile and well-characterized production methods, commercial availability, reduced cost, high chemical stability, and low toxicity. However, most importantly, their relatively good conductivity enabling appropriate electron transfer rates—as well as their high surface area yielding attachment and extraordinary loading capacity for biomolecules—have been relevant and desirable features, justifying the key role that they have been playing, and will continue to play, in electrochemical (bio)sensor development. The present review outlines the contribution of carbon nanomaterials (carbon nanotubes, graphene, fullerene, carbon nanofibers, carbon black, carbon nanopowder, biochar nanoparticles, and graphite oxide), used alone or combined with other (nano)materials, to the field of environmental (bio)sensing, and more specifically, to pharmaceutical pollutants analysis in waters and aquatic species. The main trends of this field of research are also addressed.


RSC Advances ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 2621-2628 ◽  
Author(s):  
Zhenyu Li ◽  
Omid Zabihi ◽  
Jinfeng Wang ◽  
Quanxiang Li ◽  
Jiemin Wang ◽  
...  

Polyacrylonitrile (PAN) reinforced with nano-carbons such as graphene (Gr) and carbon nanotubes (CNTs) provides great opportunity for the development of low-cost and high-performance carbon materials.


2017 ◽  
Vol 2 (4) ◽  
pp. 1548-1555 ◽  
Author(s):  
Rukiye Ayranci ◽  
Gaye Başkaya ◽  
Merve Güzel ◽  
Sait Bozkurt ◽  
Fatih Şen ◽  
...  

ACS Catalysis ◽  
2020 ◽  
Vol 10 (22) ◽  
pp. 13668-13681
Author(s):  
Jiuli Guo ◽  
Paul N. Duchesne ◽  
Lu Wang ◽  
Rui Song ◽  
Meikun Xia ◽  
...  

2019 ◽  
Vol 54 (10) ◽  
pp. 7811-7822 ◽  
Author(s):  
Yunpeng Yang ◽  
Huanlei Wang ◽  
Wei Liu ◽  
Jing Shi ◽  
Guanghe Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document