scholarly journals Synergistic Effect of Cation and Anion for Low-Temperature Aqueous Zinc-Ion Battery

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianjiang Sun ◽  
Shibing Zheng ◽  
Haihui Du ◽  
Zhanliang Tao

AbstractAlthough aqueous zinc-ion batteries have gained great development due to their many merits, the frozen aqueous electrolyte hinders their practical application at low temperature conditions. Here, the synergistic effect of cation and anion to break the hydrogen-bonds network of original water molecules is demonstrated by multi-perspective characterization. Then, an aqueous-salt hydrates deep eutectic solvent of 3.5 M Mg(ClO4)2 + 1 M Zn(ClO4)2 is proposed and displays an ultralow freezing point of − 121 °C. A high ionic conductivity of 1.41 mS cm−1 and low viscosity of 22.9 mPa s at − 70 °C imply a fast ions transport behavior of this electrolyte. With the benefits of the low-temperature electrolyte, the fabricated Zn||Pyrene-4,5,9,10-tetraone (PTO) and Zn||Phenazine (PNZ) batteries exhibit satisfactory low-temperature performance. For example, Zn||PTO battery shows a high discharge capacity of 101.5 mAh g−1 at 0.5 C (200 mA g−1) and 71 mAh g−1 at 3 C (1.2 A g−1) when the temperature drops to − 70 °C. This work provides an unique view to design anti-freezing aqueous electrolyte."Image missing"

2021 ◽  
Vol 9 (11) ◽  
pp. 7042-7047
Author(s):  
Tianjiang Sun ◽  
Xuming Yuan ◽  
Ke Wang ◽  
Shibing Zheng ◽  
Jinqing Shi ◽  
...  

A low-temperature aqueous zinc-ion battery is developed based on 4 M Zn(BF4)2 electrolyte with a low freezing point of −122 °C. The constructed Zn//TCBQ battery can be operated even at −95 °C and achieves a high discharge capacity of 63.5 mA h g−1.


2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


2021 ◽  
Vol 864 ◽  
pp. 158316
Author(s):  
Zhixiong Huang ◽  
Yanjie Duan ◽  
Quanhao Jing ◽  
Mengqi Sun ◽  
Beibei Tang ◽  
...  

2021 ◽  
Vol 107 ◽  
pp. 87-97
Author(s):  
Jialu Wang ◽  
Xiaolin Guo ◽  
Yijun Shi ◽  
Renxian Zhou

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3105
Author(s):  
Mohamed Zbair ◽  
Simona Bennici

To improve the proficiency of energy systems in addition to increasing the usage of renewable energies, thermal energy storage (TES) is a strategic path. The present literature review reports an overview of the recent advancements in the utilization of salt hydrates (single or binary mixtures) and composites as sorbents for sorption heat storage. Starting by introducing various heat storage systems, the operating concept of the adsorption TES was clarified and contrasted to other technologies. Consequently, a deep examination and crucial problems related to the different types of salt hydrates and adsorbents were performed. Recent advances in the composite materials used in sorption heat storage were also reviewed and compared. A deep discussion related to safety, price, availability, and hydrothermal stability issues is reported. Salt hydrates display high theoretical energy densities, which are promising materials in TES. However, they show a number of drawbacks for use in the basic state including low temperature overhydration and deliquescence (e.g., MgCl2), high temperature degradation, sluggish kinetics leading to a low temperature rise (e.g., MgSO4), corrosiveness and toxicity (e.g., Na2S), and low mass transport due to the material macrostructure. The biggest advantage of adsorption materials is that they are more hydrothermally stable. However, since adsorption is the most common sorption phenomenon, such materials have a lower energy content. Furthermore, when compared to salt hydrates, they have higher prices per mass, which reduces their appeal even further when combined with lower energy densities. Economies of scale and the optimization of manufacturing processes may help cut costs. Among the zeolites, Zeolite 13X is among the most promising. Temperature lifts of 35–45 °C were reached in lab-scale reactors and micro-scale experiments under the device operating settings. Although the key disadvantage is an excessively high desorption temperature, which is problematic to attain using heat sources, for instance, solar thermal collectors. To increase the energy densities and enhance the stability of adsorbents, composite materials have been examined to ameliorate the stability and to achieve suitable energy densities. Based on the reviewed materials, MgSO4 has been identified as the most promising salt; it presents a higher energy density compared to other salts and can be impregnated in a porous matrix to prepare composites in order to overcome the drawbacks connected to its use as pure salt. However, due to pore volume reduction, potential deliquescence and salt leakage from the composite as well as degradation, issues with heat and mass transport can still exist. In addition, to increase the kinetics, stability, and energy density, the use of binary salt deposited in a porous matrix is suitable. Nevertheless, this solution should take into account the deliquescence, safety, and cost of the selected salts. Therefore, binary systems can be the solution to design innovative materials with predetermined sorption properties adapted to particular sorption heat storage cycles. Finally, working condition, desorption temperature, material costs, lifetime, and reparation, among others, are the essential point for commercial competitiveness. High material costs and desorption temperatures, combined with lower energy densities under normal device operating conditions, decrease their market attractiveness. As a result, the introduction of performance metrics within the scientific community and the use of economic features on a material scale are suggested.


2021 ◽  
Author(s):  
Jinkwang Hwang ◽  
Rika Hagiwara ◽  
Hiroshi Shinokubo ◽  
Ji-Young Shin

Dual-ion sodium-organic secondary batteries were provided with antiaromatic porphyrinoid, NiNc as an active electrode material, which implemented inherent charge-discharge behaviors with high discharge capacity, high stability, high Coulombic efficiency with...


2014 ◽  
Vol 986-987 ◽  
pp. 80-83
Author(s):  
Xiao Xue Zhang ◽  
Zhen Feng Wang ◽  
Cui Hua Li ◽  
Jian Hong Liu ◽  
Qian Ling Zhang

N-methyl-N-allylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR1ATFSI) with substantial supercooling behavior is synthesized to develop low temperature electrolyte for lithium-ion batteries. Additive fluoroethylene carbonate (FEC) in LiTFSI/PYR1ATFSI/EC/PC/EMC is found that it can reduce the freezing point. LiFePO4/Li coin cells with the FEC-PYR1ATFSI electrolyte exhibit good capacity retention, reversible cycling behavior at low temperatures. The good performance can be attributed to the decrease in the freezing point and the polarization of the composite electrolyte.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850057 ◽  
Author(s):  
Reza Meshkini Far ◽  
Olena V. Ischenko ◽  
Alla G. Dyachenko ◽  
Oleksandr Bieda ◽  
Snezhana V. Gaidai ◽  
...  

Here, we report, for the first time, on the catalytic hydrogenation of CO2 to methane at atmospheric pressure. For the preparation of hydrogenation catalysts based on Ni and Fe metals, a convenient method is developed. According to this method, low-temperature reduction of the co-precipitated Ni and Fe oxides with hydrogen gives the effective and selective bimetallic Ni[Formula: see text]Fe[Formula: see text], Ni[Formula: see text]Fe[Formula: see text] and Ni[Formula: see text]Fe[Formula: see text] catalysts. At the temperature range of 300–400[Formula: see text]C, they exhibit a high efficiency of CH4 production with respect to monometallic Ni and Fe catalysts. The results imply a synergistic effect between Ni and Fe which caused the superior activity of the Ni[Formula: see text]Fe[Formula: see text] catalyst conversing [Formula: see text]% of CO2 into CH4 at 350[Formula: see text]C. To adapt the Ni–Fe catalysts in the industry, the effect of two different carriers on the efficiency of the alumina-supported Ni[Formula: see text]Fe[Formula: see text] catalyst was investigated. It is found that the Ni[Formula: see text]Fe[Formula: see text]/[Formula: see text]-Al2O3 catalyst effectively conversed CO2 giving 100% methane yield already at 275[Formula: see text]C.


Sign in / Sign up

Export Citation Format

Share Document