Is Lasiodiplodia theobromae the only species that causes leaf blight disease in Brazilian coconut palms?

2020 ◽  
Vol 45 (4) ◽  
pp. 434-442
Author(s):  
Pedro H. D. Santos ◽  
Beatriz M. Carvalho ◽  
Fernanda A. S. Aredes ◽  
Vicente Mussi-Dias ◽  
Danilo B. Pinho ◽  
...  
2020 ◽  
Vol 28 (2) ◽  
pp. 255-265
Author(s):  
J.F. Ogunsola ◽  
B. Ikotun ◽  
K.E. Ogunsola

Egusi melon (Citrullus lanatus (Thumb) Mansf.) is an important vegetable crop grown for edible seeds and oil in West Africa. Leaf Blight Disease (LBD) is one of the major constraints to its production, with potential to cause economic damage. The objective of this study was to investigate the incidence and distribution of leaf blight on Egusi melon in Southwestern Nigeria. A survey of LBD of Egusi melon was conducted in 2015 and 2016, in five southwestern States of Nigeria (Ogun, Oyo, Osun, Ekiti and Ondo States). Twenty plants each, were randomly sampled from 150 farms comprising 30 farms each, from each State. The distribution of different Egusi melon varieties planted was recorded. “Bara” cv. was the most cultivated variety (51.6%); followed by “Bojuri” (30.4%) and “Serewe” (18%). Leaf blight was observed in most farms in the five States, from 73% in Osun and Oyo states to 83% in Ondo State. Disease incidence and severity varied with locations and cultivars, and ranged from 0.0-87.5±18% and 1.0±0-4.5±0.8 in Osun State to 20.0±19 - 95.0±4.5% and 2.3±1.5 - 5.0±0 in Ondo State. Out of the twelve fungal pathogens from ten genera isolated from infected plants, only Colletotrichum truncatum, C. gloeosporioides and Lasiodiplodia theobromae caused Leaf blight on Egusi melon. Key words: Colletotrichum gloeosporioides, Colletotrichum truncatum, Lasiodiplodia theobromae


Author(s):  
B. R. Nuthan ◽  
B. R. Meghavarshinigowda ◽  
S. S. N. Maharachchikumbura ◽  
S. Mahadevakumar ◽  
K. M. Marulasiddaswamy ◽  
...  

2021 ◽  
Vol 141 ◽  
pp. 105497
Author(s):  
Rong Fan ◽  
Shanjun Tian ◽  
Youhua Long ◽  
Zhibo Zhao

2021 ◽  
Vol 18 ◽  
Author(s):  
Jyoti Gaba ◽  
Sunita Sharma ◽  
Harleen Kaur ◽  
Pardeep Kaur

Background: Thymol is a bioactive compound having many pharmacological activities. Objective: The present study was carried out to evaluate the fungi toxic effects of thymol and derivatives against phytopathogenic fungi of maize. Method: Thymol was derivatized to get formylated thymol, Mannich bases, and imine derivatives. All the synthesized thymol derivatives were characterized by their physical and spectral properties. Synthesized thymol derivatives were screened for their in vitro antifungal effects using poisoned food technique against three maize pathogenic fungi namely Fusarium moniliforme, Rhizoctonia solani and Dreschlera maydis. Results: Thymol and formylated thymol showed promising results for control of D. maydis with ED50 values less than standard carbendazim and comparable to standard mancozeb. These two compounds were further evaluated for control of D. maydis causative maydis leaf blight disease on maize plants grown in the field during the Kharif season (June to October) 2018. Conclusion: Thymol exhibited significant control of maydis leaf blight disease of maize and emerged as a potential alternative to synthetic fungicides used in cereal crops.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


Author(s):  
Luqman Qurata Aini ◽  
Lilis Suryani ◽  
Arifin Noor Sugiharto ◽  
Abdul Latief Abadi

Author(s):  
A. Khandual ◽  
M. K. Mishra ◽  
H. Swain ◽  
S. Mohanty ◽  
P. C. Rath ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 54-59
Author(s):  
SANTOSH KUMAR ◽  
MD. NADEEM AKHTAR ◽  
SANTOSH KUMAR ◽  
MAHESH KUMAR ◽  
TRIBHUWAN KUMAR

Weather parameters play a pivotal role in the infection process and spread of pathogen. It also influences the expression of susceptibility/resistance of the host plant during post-infection phases. Therefore, an experiment was conducted for two consecutive cropping seasons (2018 &2019) to study the influence of weather parameters such as temperature, humidity, rainfall and wind direction on the emergence of alternaria leaf blight of makhana in Koshi region of Bihar. Maximum per cent disease severity of alternarialeaf blightwas observed during the peak monsoon months (June to August). Highest disease severity of leaf blight (14.80% & 15.7%) was observed in the mid June during crop season, 2018 and 2019. High temperature (36.9oC & 38.1oC), and relative humidity (94% & 96.4%) of both the year 2018 and 2019 were found correlated with higher severity to alternaria leaf blight. Similarly average HTR values (3.1) were also found correlated with the average high temperature and relative humidity of both years (2018 and 2019) in terms of severity of leaf blight disease. Maximum temperatures, relative humidity and rainfall exhibited strong positive linear relationship and influenced the occurrence of alternaria leaf blight disease significantly. We also developed a geo-phytopathological model for the prediction of alternaria leaf blight disease of makhana on the basis of congenial mean temperature and relative humidity.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 291
Author(s):  
X. Cao ◽  
Y. L. Du ◽  
X. S. Zhang ◽  
H. Y. Li ◽  
S. J. Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document