The Impact of the Uncanny Valley Effect on the Perception of Animated Three-Dimensional Humanlike Characters

2017 ◽  
Vol 6 (3) ◽  
pp. 185-203 ◽  
Author(s):  
Willie Bouwer ◽  
Francois Human

2020 ◽  
Author(s):  
Christopher Welker ◽  
David France ◽  
Alice Henty ◽  
Thalia Wheatley

Advances in artificial intelligence (AI) enable the creation of videos in which a person appears to say or do things they did not. The impact of these so-called “deepfakes” hinges on their perceived realness. Here we tested different versions of deepfake faces for Welcome to Chechnya, a documentary that used face swaps to protect the privacy of Chechen torture survivors who were persecuted because of their sexual orientation. AI face swaps that replace an entire face with another were perceived as more human-like and less unsettling compared to partial face swaps that left the survivors’ original eyes unaltered. The full-face swap was deemed the least unsettling even in comparison to the original (unaltered) face. When rendered in full, AI face swaps can appear human and avoid aversive responses in the viewer associated with the uncanny valley.



Homo Ludens ◽  
2019 ◽  
pp. 135-148
Author(s):  
Dawid Ratajczyk

The uncanny valley is an idea proposed by Masahiro Mori (1970) regarding negative emotions present in contacts with almost humanlike characters. In the beginning, it was considered only in the context of humanoid robots, but this context was broadened by the development of highly realistic animations and video games. Particularly evident are players’ interests in the uncanny valley. Recently there have been a growing number of reports from empirical studies regarding participants’ perception of highly realistic characters. In the paper, a review of publications concerning the uncanny valley hypothesis in video games is presented, as are deliberations about the impact of the uncanny valley on the game industry. According to the results, there is a need to recognise which attributes of virtual characters cause the uncanny valley effect.



2019 ◽  
Author(s):  
Eva Wiese ◽  
Patrick P. Weis

Humanlike but not perfectly human agents frequently evoke feelings of eeriness, a phenomenon termed the Uncanny Valley (UV). The Categorical Perception Hypothesis proposes that effects associated with the UV are due to uncertainty as to whether to categorize agents falling into the valley as “human” or “nonhuman”. However, since UV studies have traditionally looked at agents of varying human-likeness, it remains unclear whether UV-related effects are due to categorical uncertainty in general or are specifically evoked by categorizations that require decisions regarding an agent’s human-likeness. Here, we used mouse tracking to determine whether agent spectra with (i.e., robot-human) and without (i.e., robot-animal and robot-stuffed animal) a human endpoint cause phenomena related to categorical perception to comparable extents. Specifically, we compared human and nonhuman agent spectra with respect to existence and location of a category boundary (H1-1 and H2-1), as well as the magnitude of cognitive conflict around the boundary (H1-2 and H2-2). The results show that human and nonhuman spectra exhibit category boundaries (H1-1) at which cognitive conflict is higher than for less ambiguous parts of the spectra (H1-2). However, in human agent spectra cognitive conflict maxima were more pronounced than for nonhuman agent spectra (H2-1) and category boundaries were shifted towards the human endpoint of the spectrum (H2-2). Overall, these results suggest a quantitatively, though not qualitatively, different categorization process for spectra containing human endpoints. Possible reasons and the impact for virtual and robotic agent design are discussed.



Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).



2014 ◽  
Author(s):  
Jessy Rose Goodman
Keyword(s):  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cui Wang ◽  
Ling Cai ◽  
Yaojian Wu ◽  
Yurong Ouyang

AbstractIntegrated renovation projects are important for marine ecological environment protection. Three-dimensional hydrodynamics and water quality models are developed for the Maowei Sea to assess the hydrodynamic environment base on the MIKE3 software with high resolution meshes. The results showed that the flow velocity changed minimally after the project, decreasing by approximately 0.12 m/s in the east of the Maowei Sea area and increasing by approximately 0.01 m/s in the northeast of the Shajing Port. The decrease in tidal prism (~ 2.66 × 106 m3) was attributed to land reclamation, and accounted for just 0.86% of the pre-project level. The water exchange half-life increased by approximately 1 day, implying a slightly reduced water exchange capacity. Siltation occurred mainly in the reclamation and dredging areas, amounting to back-silting of approximately 2 cm/year. Reclamation project is the main factor causing the decrease of tidal volume and weakening the hydrodynamics in Maowei Sea. Adaptive management is necessary for such a comprehensive regulation project. According to the result, we suggest that reclamation works should strictly prohibit and dredging schemes should optimize in the subsequent regulation works.



Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.



2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Francesco Rizzetto ◽  
Francesca Calderoni ◽  
Cristina De Mattia ◽  
Arianna Defeudis ◽  
Valentina Giannini ◽  
...  

Abstract Background Radiomics is expected to improve the management of metastatic colorectal cancer (CRC). We aimed at evaluating the impact of liver lesion contouring as a source of variability on radiomic features (RFs). Methods After Ethics Committee approval, 70 liver metastases in 17 CRC patients were segmented on contrast-enhanced computed tomography scans by two residents and checked by experienced radiologists. RFs from grey level co-occurrence and run length matrices were extracted from three-dimensional (3D) regions of interest (ROIs) and the largest two-dimensional (2D) ROIs. Inter-reader variability was evaluated with Dice coefficient and Hausdorff distance, whilst its impact on RFs was assessed using mean relative change (MRC) and intraclass correlation coefficient (ICC). For the main lesion of each patient, one reader also segmented a circular ROI on the same image used for the 2D ROI. Results The best inter-reader contouring agreement was observed for 2D ROIs according to both Dice coefficient (median 0.85, interquartile range 0.78–0.89) and Hausdorff distance (0.21 mm, 0.14–0.31 mm). Comparing RF values, MRC ranged 0–752% for 2D and 0–1567% for 3D. For 24/32 RFs (75%), MRC was lower for 2D than for 3D. An ICC > 0.90 was observed for more RFs for 2D (53%) than for 3D (34%). Only 2/32 RFs (6%) showed a variability between 2D and circular ROIs higher than inter-reader variability. Conclusions A 2D contouring approach may help mitigate overall inter-reader variability, albeit stable RFs can be extracted from both 3D and 2D segmentations of CRC liver metastases.



2020 ◽  
Vol 49 (D1) ◽  
pp. D38-D46
Author(s):  
Kyukwang Kim ◽  
Insu Jang ◽  
Mooyoung Kim ◽  
Jinhyuk Choi ◽  
Min-Seo Kim ◽  
...  

Abstract Three-dimensional (3D) genome organization is tightly coupled with gene regulation in various biological processes and diseases. In cancer, various types of large-scale genomic rearrangements can disrupt the 3D genome, leading to oncogenic gene expression. However, unraveling the pathogenicity of the 3D cancer genome remains a challenge since closer examinations have been greatly limited due to the lack of appropriate tools specialized for disorganized higher-order chromatin structure. Here, we updated a 3D-genome Interaction Viewer and database named 3DIV by uniformly processing ∼230 billion raw Hi-C reads to expand our contents to the 3D cancer genome. The updates of 3DIV are listed as follows: (i) the collection of 401 samples including 220 cancer cell line/tumor Hi-C data, 153 normal cell line/tissue Hi-C data, and 28 promoter capture Hi-C data, (ii) the live interactive manipulation of the 3D cancer genome to simulate the impact of structural variations and (iii) the reconstruction of Hi-C contact maps by user-defined chromosome order to investigate the 3D genome of the complex genomic rearrangement. In summary, the updated 3DIV will be the most comprehensive resource to explore the gene regulatory effects of both the normal and cancer 3D genome. ‘3DIV’ is freely available at http://3div.kr.



2020 ◽  
Vol 29 (1) ◽  
pp. 1-8
Author(s):  
Ahmed Allali ◽  
Sadia Belbachir ◽  
Ahmed Alami ◽  
Belhadj Boucham ◽  
Abdelkader Lousdad

AbstractThe objective of this work lies in the three-dimensional study of the thermo mechanical behavior of a blade of a centrifugal compressor. Numerical modeling is performed on the computational code "ABAQUS" based on the finite element method. The aim is to study the impact of the change of types of blades, which are defined as a function of wheel output angle β2, on the stress fields and displacements coupled with the variation of the temperature.This coupling defines in a realistic way the thermo mechanical behavior of the blade where one can note the important concentrations of stresses and displacements in the different zones of its complex form as well as the effects at the edges. It will then be possible to prevent damage and cracks in the blades of the centrifugal compressor leading to its failure which can be caused by the thermal or mechanical fatigue of the material with which the wheel is manufactured.



Sign in / Sign up

Export Citation Format

Share Document