Physical Properties of Volcanic Ash Based Geopolymer Concrete

2016 ◽  
Vol 841 ◽  
pp. 1-6 ◽  
Author(s):  
Puput Risdanareni ◽  
Adjib Karjanto ◽  
Febriano Khakim

This paper describes the result of investigating volcanic ash of Mount Kelud as fly ash substitute material to produce geopolymer concrete. The test was held on geopolymer concrete blended with 0%, 25%, 50% and 100% fly ash replacement with volcanic ash. Natrium Hidroxide (NaOH) with concentration of 12 molar and Natrium Silicate (Na2SiO3) were used as alkaline activator. While alkali-activator ratio of 2 was used in this research. The physical properties was tested by porosity and setting time test, while split tensile strength presented to measure brittle caracteristic of geopolymer concrete. The result shown that increasing volcanic ash content in the mixture will increase setting time of geopolymer paste. On the other hand increasing volcanic ash content will reduce split tensile strength and porosity of geopolymer concrete. After all replacing fly ash with volcanic ash was suitable from 25% to 50% due to its optimum physical and mechanical properties.

2015 ◽  
Vol 754-755 ◽  
pp. 406-412 ◽  
Author(s):  
Puput Risdanareni ◽  
Januarti Jaya Ekaputri ◽  
Mohd Mustafa Al Bakri Abdullah

This paper describes the effect of alkaline activator ratio (Na2SiO3/NaOH) to mechanical properties of geopolymer concrete. The mechanical properties of geopolymer concrete were assessed by setting time, split tensile strength and porosity. Fly ash was used as a cement substitute, and trass used as filler. While, Natrium hydroxide (NaOH) and Sodium Silicate (Na2SiO3) was applied as alkaline activator. In this study, NaOH concentration eight and ten molar with an alkaline activator ratio Na2SiO3/ NaOH by mass: 0.5, 1, 1.5, 2 and 2.5 were used. The test result showed that setting time, porosity and split tensile strength of geopolymer concrete were hardly influenced by NaOH concentration and the alkaline activator ratio. The alkaline activator ratio of Na2SiO3/NaOH has an optimum value at 2 and 2.5. Test result showed that the fastest setting time was 25 minute, the highest amount of closed porosity was 9.035 % and the highest split tensile strength was 2.86 MPa.


2021 ◽  
Author(s):  
M. Indhumathi Anbarasan ◽  
S.R. Sanjaiyan ◽  
S. Nagan Soundarapandiyan

Geopolymer concrete (GPC) has significant potential as a more sustainable alternative for ordinary Portland cement concrete. GPC had been introduced to reduce carbon footprints and thereby safeguarding environment. This emerging eco friendly construction product finds majority of its application in precast and prefabricated structures due to the special curing conditions required. Sustained research efforts are being taken to make the product suitable for in situ applications. The developed technology will certainly address the issues of huge energy consumption as well reduce water use which is becoming scarce nowadays. Ground Granulated Blast Furnace Slag (GGBS) a by-product of iron industries in combination with fly ash has proved to give enhanced strength, durability as well reduced setting time. This study investigates the effect of GGBS as partial replacement of fly ash in the manufacture of GPC. Cube and cylindrical specimens were cast and subjected to ambient curing as well to alternate wetting-drying cycles. The 28 day compressive strength, split tensile strength, flexural strength and density of GPC specimens were found. The study revealed increase in compressive strength, split tensile strength, density as well flexural strength up to 40 percent replacement of fly ash by GGBS.


The present study appraises the recitals of carboxylic acid- based admixture to increase concrete water tightness and self-sealing capacity of the cement and geopolymer concrete. Outcomes of the previous studies in particular, adding 1% by cement mass of the carboxylic polymer reasons for reduction in the water dispersion under pressure of 7-day wet cured concrete by 50% associated to that of the conforming reference concrete. At 7 days, M4 mix compressive strength is about 43.5% less than M3 mix. The compressive strength of M4 increases and is about 37.6% less than M3 mix at 28 days of curing. At 7 days, M4 mix split tensile strength is about 17.5% less than M3 mix (cement concrete with 0.45 w/c ratio). The split tensile strength of M4 declines and is about 42.3% less than M3 mix at 28 days of curing. The strength of the geopolymer concrete tends to increase as the time period increases due to the presence of fly ash in it. So it is expected that geopolymer concrete will give more strength than cement concrete in long term with the presence of carboxylic acid


Author(s):  
Hafez Elsayed Elyamany ◽  
Abd Elmoaty Mohamed Abd Elmoaty ◽  
Abdul Rahman Ahmed Diab

This research focused on the role of fly ash and silica fume on slag geopolymer concrete through investigating workability (slump, and slump loss), initial setting time, final setting time, and mechanical properties of slag geopolymer concrete, S-GPC, (compressive strength, splitting tensile strength, modulus of elasticity) in addition to SEM (Scanning electron microscope), and X-Ray analysis. The considered variables included, fly ash (FA) content as a replacement of ground granulated blast furnace slag (GS) (0, 10, 20, 30, and 40 %), presence of silica fume (SF) as a replacement of slag, concentration of sodium hydroxide, NaOH, (molarity: 10M, 16M, and 18M), additional water content (7.5,11,14, and 20 %), and curing type (thermal, air, and water curing). S-GPC yielded rapid stiffening and high slump loss with high mechanical properties. The use of silica fume or fly ash or a mix of them enhanced workability, decreased rate of slump loss, and delayed setting time. ACI 318 equation over estimates splitting tensile strength of FS-GPC.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012007
Author(s):  
O. Nagaraju ◽  
J. Ritesh ◽  
T C Venkata Reddy

Abstract In this study concentrated on the development of GPC by using industrial waste products such as fly ash, alccofine (1203) and GGBS. GPC is an advanced eco-friendly concrete manufactured by activating source minerals rich in alumina and silica by alkaline liquids to form aluminosilicates based on inorganic polymers. Where cement was complete replaced with mix proportion of 50% fly ash, 25% alccofine (1203) and 25% GGBS for different molarities (8M, 10M and 12M) of alkaline activators which is solving the problem of unsustainable usage of limestone and pollutant related to the manufacturing process of cement. The present paper reports the cube compressive strength, cylindrical split tensile strength and flexural strength of GPC and which is compared with M25 grade of control specimens. It was observed that the strength of GPC is increased than normal concrete as molarities increases of 8 M, 10M and 12M. The paper explains about the effectiveness of fly ash, alccofine (1203) and GGBS materials.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 433
Author(s):  
J Asanammal Saral ◽  
S Gayathri ◽  
M Tamilselvi ◽  
B Raghul Raj

The major problem of the world is facing today is environmental pollution. It is well known that for the production of 1-ton of cement consumes more energy and exhibit 0.8-ton of CO2 .On the other hand Fly ash is a residue from the combustion of pulverized coal from the flue gases of thermal power plant. Recently, the fly ash is not effectively used and a large part of it is disposed in landfill. Due to this problem the various researchers have sort for a new binder to minimize the consumption of OPC. This study evaluates the strength of geopolymer concrete having fly ash as the major binding material and the sand a fine aggregate was replaced with copper slag of 40%  and glass fiber to enhance the mechanical properties have been presented. This paper analyses on the mechanical properties of eopolymer concrete composites such as compressive strength, split tensile strength and water absorption in heat curing at 60˚C for 24 hrs in hot air oven. Glass fibers were added in the mix in the volume fraction of 0.5%, 1.0%, 1.5% and 2.0% volume of the concrete. The influence of fiber content in terms of volume fraction on the compressive, split tensile strength of geopolymer concrete is presented. The result shows the elevated performance of the properties exhibited by the geopolymeric concrete with and without fibres.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 197
Author(s):  
Herwina Rahayu Putri ◽  
Firman Paledung ◽  
Erniati Bachtiar ◽  
Popy Indrayani

Fly ash is a kind of trash that may degrade the quality of the air. As a result, it is critical that it be used as an ecologically beneficial material. Although cement is the most often used construction material, its manufacturing generates carbon dioxide, which may degrade air quality. The aim of this research was to evaluate the compressive strength and split tensile strength of self-compacting geopolymer concrete (SCGC) cured in seawater, as well as to compare SCGC with and without saltwater. In this research, a cylindrical specimen with a diameter of 10 cm and a height of 20 cm was utilized as the specimen. Fly ash is used in proportion to fine and coarse aggregates at a ratio of 1: 0.65: 1.5. Using a 0.4 activator to binder ratio. The molarity ranges utilized were 11 M, 12 M, 13 M, 14 M, and 15 M. Compressive strength and split tensile strength tests were conducted on 28-day-old concrete. The findings indicated that when the molarity of SCGC treated with seawater increased from 11 to 15 M, the compressive and split tensile strengths increased. Compressive strength values were greatest in SCGC treated at room temperature when an activator of 13 M was used, and compressive strength values dropped in SCGC treated at room temperature when an activator greater than 13 M was used


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Li Wang ◽  
Hongliang Zhang ◽  
Yang Gao

Low temperature negatively affects the engineering performance of cementitious materials and hinders the construction productivity. Previous studies have already demonstrated that TiO2 nanoparticles can accelerate cement hydration and enhance the strength development of cementitious materials at room temperature. However, the performance of cementitious materials containing TiO2 nanoparticles at low temperatures is still unknown. In this study, specimens were prepared through the replacement of cement with 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, and 5 wt.% TiO2 nanoparticles and cured under temperatures of 0°C, 5°C, 10°C, and 20°C for specific ages. Physical and mechanical properties of the specimens were evaluated through the setting time test, compressive strength test, flexural strength test, hydration degree test, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) analysis, thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) in order to examine the performance of cementitious materials with and without TiO2 nanoparticles at various curing temperatures. It was found that low temperature delayed the process of cement hydration while TiO2 nanoparticles had a positive effect on accelerating the cement hydration and reducing the setting time in terms of the results of the setting time test, hydration degree test, and strength test, and the specimen with the addition of 2 wt.% TiO2 nanoparticles showed the superior performance. Refined pore structure in the MIP tests, more mass loss of CH in TGA, intense peak appearance associated with the hydration products in XRD analysis, and denser microstructure in SEM demonstrated that the specimen with 2 wt.% TiO2 nanoparticles exhibited preferable physical and mechanical properties compared with that without TiO2 nanoparticles under various curing temperatures.


Author(s):  
S. O. Adetola

Efforts have been made to improve the quality and performance of concrete structures especially its permeability and durability properties. Concrete is a heterogeneous material containing several components (sand, aggregate, cement, etc.) which vary in size and geometry, and their positions in the concrete enclosure are randomly distributed, giving them defects even before experiencing any form of mechanical loading. In this study, the compositions of Chicken Feather Fibre (CFF) and Synthetic Hair Fibre (SHF) by weight were varied by 0%, 1.5%, 2.5%, 3.5% and 5% for Samples A to E respectively. Physical and Mechanical properties such as water absorption (WA), thickness swelling (TS), compressive and split tensile strength were determined. Results showed that WA and TS property of the fibre reinforced concrete block decreased with decrease in percentage by weight of CFF and SHF and curing days with highest value being 10.01 to a lowest value of 0.14. Also, compressive strength (CS) for sample A increased with increase in curing days from 16.98MPa at 7 days to 20.66MPa at 28 days and sample B has its highest CS at 14 days with 9.98 MPa while other samples decreased progressively. Split Tensile Strength (STS) for sample A increases with increase in curing days from 9.84MPa to 13.64MPa while sample B decreases from 7 to 21 days of curing from 5.43MPa to 4.79MPa and increased at 28 days to 4.92MPa. Samples C, D and E follow same trend as sample B. The SEM study shows that the interlocking concrete block (ICB) containing 0% of chicken feather and synthetic hair fibre has brittle characteristics while other samples containing different percentage by weight of chicken feather and synthetic hair fibre shows ductile characteristics. CFF and SHF enhanced WA, TS, CS and STS of fibre reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document