scholarly journals Exploring the step function distribution of the threshold fraction of adopted neighbors versus minimum fraction of nodes as initial adopters to assess the cascade blocking intra-cluster density of complex real-world networks

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Natarajan Meghanathan

AbstractWe first propose a binary search algorithm to determine the minimum fraction of nodes in a network to be used as initial adopters ($$f_{IA}^{\min }$$ f IA min ) for a particular threshold fraction (q) of adopted neighbors (related to the cascade capacity of the network) leading to a complete information cascade. We observe the q versus $$f_{IA}^{\min }$$ f IA min distribution for several complex real-world networks to exhibit a step function pattern wherein there is an abrupt increase in $$f_{IA}^{\min }$$ f IA min beyond a certain value of q (qstep); the $$f_{IA}^{\min }$$ f IA min values at qstep and the next measurable value of q are represented as $$\underline{{f_{IA}^{\min } }}$$ f IA min ̲ and $$\overline{{f_{IA}^{\min } }}$$ f IA min ¯ respectively. The difference $$\overline{{f_{IA}^{\min } }} - \underline{{f_{IA}^{\min } }}$$ f IA min ¯ - f IA min ̲ is observed to be significantly high (a median of 0.44 for a suite of 40 real-world networks studied in this paper) such that we claim the 1 − qstep value (we propose to refer 1 − qstep as the Cascade Blocking Index, CBI) for a network could be perceived as a measure of the intra-cluster density of the blocking cluster of the network that cannot be penetrated without including an appreciable number of nodes from the cluster to the set of initial adopters (justifying a relatively larger $$\overline{{f_{IA}^{\min } }}$$ f IA min ¯ value).

2017 ◽  
Vol 10 (2) ◽  
pp. 52
Author(s):  
Natarajan Meghanathan

Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ. We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ-search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ-spacer) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r. We show the use of the binary search algorithm to find the maximum Threshold PCC value rmax (such that δ-spacermax is positive) for a real-world network. We observe a very strong correlation between rmax and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower rmax value and vice-versa.


2021 ◽  
pp. 193229682110075
Author(s):  
Rebecca A. Harvey Towers ◽  
Xiaohe Zhang ◽  
Rasoul Yousefi ◽  
Ghazaleh Esmaili ◽  
Liang Wang ◽  
...  

The algorithm for the Dexcom G6 CGM System was enhanced to retain accuracy while reducing the frequency and duration of sensor error. The new algorithm was evaluated by post-processing raw signals collected from G6 pivotal trials (NCT02880267) and by assessing the difference in data availability after a limited, real-world launch. Accuracy was comparable with the new algorithm—the overall %20/20 was 91.7% before and 91.8% after the algorithm modification; MARD was unchanged. The mean data gap due to sensor error nearly halved and total time spent in sensor error decreased by 59%. A limited field launch showed similar results, with a 43% decrease in total time spent in sensor error. Increased data availability may improve patient experience and CGM data integration into insulin delivery systems.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2440
Author(s):  
Francesco Spagnolo ◽  
Bruna Dalmasso ◽  
Enrica Tanda ◽  
Miriam Potrony ◽  
Susana Puig ◽  
...  

Inherited pathogenic variants (PVs) in the CDKN2A tumor suppressor gene are among the strongest risk factors for cutaneous melanoma. Dysregulation of the p16/RB1 pathway may intrinsically limit the activity of MAPK-directed therapy due to the interplay between the two pathways. In our study, we assessed, for the first time, whether patients with germline CDKN2A PVs achieve suboptimal results with BRAF inhibitors (BRAFi)+/−MEK inhibitors (MEKi). We compared the response rate of nineteen CDKN2A PVs carriers who received first-line treatment with BRAFi+/−MEKi with an expected rate derived from phase III trials and “real-world” studies. We observed partial response in 16/19 patients (84%), and no complete responses. The overall response rate was higher than that expected from phase III trials (66%), although not statistically significant (p-value = 0.143; 95% CI = 0.60–0.97); the difference was statistically significant (p-value = 0.019; 95% CI = 0.62–0.97) in the comparison with real-world studies (57%). The clinical activity of BRAFi+/−MEKi in patients with germline CDKN2A PV was not inferior to that of clinical trials and real-world studies, which is of primary importance for clinical management and genetic counseling of this subgroup of patients.


2021 ◽  
Vol 12 (5) ◽  
pp. 1-25
Author(s):  
Shengwei Ji ◽  
Chenyang Bu ◽  
Lei Li ◽  
Xindong Wu

Graph edge partitioning, which is essential for the efficiency of distributed graph computation systems, divides a graph into several balanced partitions within a given size to minimize the number of vertices to be cut. Existing graph partitioning models can be classified into two categories: offline and streaming graph partitioning models. The former requires global graph information during the partitioning, which is expensive in terms of time and memory for large-scale graphs. The latter creates partitions based solely on the received graph information. However, the streaming model may result in a lower partitioning quality compared with the offline model. Therefore, this study introduces a Local Graph Edge Partitioning model, which considers only the local information (i.e., a portion of a graph instead of the entire graph) during the partitioning. Considering only the local graph information is meaningful because acquiring complete information for large-scale graphs is expensive. Based on the Local Graph Edge Partitioning model, two local graph edge partitioning algorithms—Two-stage Local Partitioning and Adaptive Local Partitioning—are given. Experimental results obtained on 14 real-world graphs demonstrate that the proposed algorithms outperform rival algorithms in most tested cases. Furthermore, the proposed algorithms are proven to significantly improve the efficiency of the real graph computation system GraphX.


2017 ◽  
Vol 59 ◽  
pp. 463-494 ◽  
Author(s):  
Shaowei Cai ◽  
Jinkun Lin ◽  
Chuan Luo

The problem of finding a minimum vertex cover (MinVC) in a graph is a well known NP-hard combinatorial optimization problem of great importance in theory and practice. Due to its NP-hardness, there has been much interest in developing heuristic algorithms for finding a small vertex cover in reasonable time. Previously, heuristic algorithms for MinVC have focused on solving graphs of relatively small size, and they are not suitable for solving massive graphs as they usually have high-complexity heuristics. This paper explores techniques for solving MinVC in very large scale real-world graphs, including a construction algorithm, a local search algorithm and a preprocessing algorithm. Both the construction and search algorithms are based on low-complexity heuristics, and we combine them to develop a heuristic algorithm for MinVC called FastVC. Experimental results on a broad range of real-world massive graphs show that, our algorithms are very fast and have better performance than previous heuristic algorithms for MinVC. We also develop a preprocessing algorithm to simplify graphs for MinVC algorithms. By applying the preprocessing algorithm to local search algorithms, we obtain two efficient MinVC solvers called NuMVC2+p and FastVC2+p, which show further improvement on the massive graphs.


Author(s):  
Liguo Fei ◽  
Yuqiang Feng

Belief function has always played an indispensable role in modeling cognitive uncertainty. As an inherited version, the theory of D numbers has been proposed and developed in a more efficient and robust way. Within the framework of D number theory, two more generalized properties are extended: (1) the elements in the frame of discernment (FOD) of D numbers do not required to be mutually exclusive strictly; (2) the completeness constraint is released. The investigation shows that the distance function is very significant in measuring the difference between two D numbers, especially in information fusion and decision. Modeling methods of uncertainty that incorporate D numbers have become increasingly popular, however, very few approaches have tackled the challenges of distance metrics. In this study, the distance measure of two D numbers is presented in cases, including complete information, incomplete information, and non-exclusive elements


2020 ◽  
Author(s):  
Han Zhang ◽  
Nicola C Anderson ◽  
Kevin Miller

Recent studies have shown that mind-wandering (MW) is associated with changes in eye movement parameters, but have not explored how MW affects the sequential pattern of eye movements involved in making sense of complex visual information. Eye movements naturally unfold over time and this process may reveal novel information about cognitive processing during MW. The current study used Recurrence Quantification Analysis (Anderson, Bischof, Laidlaw, Risko, &amp; Kingstone, 2013) to describe the pattern of refixations (fixations directed to previously-inspected regions) during MW. Participants completed a real-world scene encoding task and responded to thought probes assessing intentional and unintentional MW. Both types of MW were associated with worse memory of the scenes. Importantly, RQA showed that scanpaths during unintentional MW were more repetitive than during on-task episodes, as indicated by a higher recurrence rate and more stereotypical fixation sequences. This increased repetitiveness suggests an adaptive response to processing failures through re-examining previous locations. Moreover, this increased repetitiveness contributed to fixations focusing on a smaller spatial scale of the stimuli. Finally, we were also able to validate several traditional measures: both intentional and unintentional MW were associated with fewer and longer fixations; Eye-blinking increased numerically during both types of MW but the difference was only significant for unintentional MW. Overall, the results advanced our understanding of how visual processing is affected during MW by highlighting the sequential aspect of eye movements.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Israa AL-Forati ◽  
Abdulmuttalib Rashid

This paper proposes a low-cost Light Emitting Diodes (LED) system with a novel arrangement that allows an indoor multi-robot localization. The proposed system uses only a matrix of low-cost LED installed uniformly on the ground of an environment and low-cost Light Dependent Resistor (LDR), each equipped on bottom of the robot for detection. The matrix of LEDs which are driven by a modified binary search algorithm are used as active beacons. The robot localizes itself based on the signals it receives from a group of neighbor LEDs. The minimum bounded circle algorithm is used to draw a virtual circle from the information collected from the neighbor LEDs and the center of this circle represents the robot’s location. The propose system is practically implemented on an environment with (16*16) matrix of LEDs. The experimental results show good performance in the localization process.


Sign in / Sign up

Export Citation Format

Share Document