scholarly journals Effects of process parameters on dimensional precision and tensile strength of wax patterns for investment casting by selective laser sintering

China Foundry ◽  
2018 ◽  
Vol 15 (4) ◽  
pp. 299-306 ◽  
Author(s):  
Qian Wei ◽  
Run-nan Wang ◽  
Qing-yan Xu ◽  
Bai-cheng Liu
2010 ◽  
Vol 43 ◽  
pp. 578-582 ◽  
Author(s):  
C.Y. Wang ◽  
Q. Dong ◽  
X.X. Shen

Warpage is a crucial factor to accuracy of sintering part in selective laser sintering (SLS) process. In this paper, The influence of process parameters on warpage when sintering polystyrene(PS) materials in SLS are investigated. The laser power, scanning speed, hatch spacing, layer thickness as well as temperature of powder are considered as the main process parameters. The results showed that warpage increases with the increase of hatch space. Contary to it, warpage decreases with the increase of laser power. Warpage decreases with the increase of layer thickness between 0.16~0.18mm and changes little with increase of the thickness. Warpage increases along with the increase of scanning speed but decreases when the speed is over about 2000mm/s. When the temperature changes between 82°C-86°C, warpage decreases little with the increase of temperature. But further increase of temperature leads to warpage decreasing sharply when the temperature changes between 86°C-90°C.


2015 ◽  
Vol 21 (6) ◽  
pp. 630-648 ◽  
Author(s):  
Sunil Kumar Tiwari ◽  
Sarang Pande ◽  
Sanat Agrawal ◽  
Santosh M. Bobade

Purpose – The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements. Design/methodology/approach – The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials. Findings – Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts. Originality/value – The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.


2019 ◽  
Vol 26 (09) ◽  
pp. 1950055
Author(s):  
CHENGMEI GUI ◽  
ZHENMING CHEN ◽  
CHENGUANG YAO ◽  
GUISHENG YANG

In this work, SiO2-encapsulated copper particles/PA12 (Cu-SiO2/PA12) composite powders were prepared by electroless composite plating, and the laser sintering behavior was investigated. Results showed that Cu, Cu2O, CuO, and SiO2 (Cu-SiO2) composite particles were plated on the surface of KH550-modified PA12 powders. The Cu-SiO2 particles existed independently on PA12 surface, and the size was around 200 nm. The melting temperature and crystallization temperature of Cu-SiO2/PA12 composite powders were 183∘C and 150∘C. The results indicate that the selective laser sintering (SLS) process involved the contact of Cu-SiO2/PA12 powders, the formation of sintering neck, the growth of sintering neck, and the formation of fused solid. The Cu-SiO2 composite particles uniformly dispersed in the part due to surface tension, and the contact interface was good due to their similar polarity. The Cu-SiO2/PA12 SLS parts had excellent dimensional precision. The tensile strength of the 15[Formula: see text]W-sintered Cu-SiO2/PA12 specimen was 48[Formula: see text]MPa.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5081
Author(s):  
Yuu Harada ◽  
Yoshiki Ishida ◽  
Daisuke Miura ◽  
Satoru Watanabe ◽  
Harumi Aoki ◽  
...  

Selective laser sintering (SLS) is being developed for dental applications. This study aimed to investigate the properties of Ti-6Al-4V and pure titanium specimens fabricated using the SLS process and compare them with casting specimens. Besides, the effect of the building direction on the properties of the SLS specimens was also investigated. Specimens were prepared by SLS using Ti-6Al-4V powder or pure titanium powder. Casting specimens were also prepared using Ti-6Al-4V alloys and pure titanium. The mechanical properties (tensile strength and elongation), physical properties (surface roughness, contact angle, and Vickers hardness); corrosion resistors (color difference and corrosion), and surface properties (chemical composition and surface observation) were examined. Both Ti-6Al-4V and pure titanium specimens produced using the SLS process had comparable or superior properties compared with casting specimens. In comparing the building directions, specimens fabricated horizontally to the printing platform showed the greatest tensile strength, and the surface roughness scanned in the horizontal direction to the platform showed the smallest. However, there was no significant effect on other properties. Thus, the SLS process with Ti-6Al-4V powder and pure titanium powder has great performance for the fabrication of dental prosthesis, and there is a possibility for it to take the place of conventional methods.


2014 ◽  
Vol 630 ◽  
pp. 318-325 ◽  
Author(s):  
Czesław Kundera ◽  
Tomasz Kozior

The article contains the results of studies concerning the effects of selected parameters of the manufacturing process of elastic bellows on their elastic properties and strength. Bellows models were made using additive technology SLS selective laser sintering, in which the material used to construct models was a polyamide PA 2200. Bellows printing process proceeded in a surface parallel to the axis of the bellows and in a surface perpendicular to it. Based on measurements of deformation coefficients of elasticity of bellows were determined, also the measure of the maximum axial force exerted by the bellows while loading the internal pressure was carried out. Comparing the measurement results a significant effect of process parameters on the flexible properties of elastic bellows and their resistance to internal pressure were determined.


2010 ◽  
Vol 43 ◽  
pp. 430-433
Author(s):  
Nai Fei Ren ◽  
Pan Wang ◽  
Yan Luo ◽  
Hui Juan Wu

The dimensional accuracy and mechanics properties of parts made by Selective Laser Sintering depend greatly on the sintering process parameters. The influence of process parameters on warping weight of parts sintered by blends of polyamide (PA12) and high density polyethylene (HDPE) was studied. The relationship between the process parameters and the warping height was presented. The surface morphology of the part and uniformity of powder mixed were analyzed by SEM. The optimum parameters of minimum warping height were obtained: preheat temperature 110°C, scan speed 300mm/s, laser power 21W, thickness of single layer 0.2mm.


Sign in / Sign up

Export Citation Format

Share Document