scholarly journals Evaluation of Antagonistic Potential of Biocontrol Agents against Macrophomina Phaseolina (tassi) Goid. causing Stem and Root Rot of Sesame [Sesamum Indicum l.] under In vitro and In vivo

Author(s):  
Ashish Kumar Satpathi ◽  
N.M. Gohel
Author(s):  
Lalita Lakhran ◽  
R.R. Ahir

The present study was planned to evaluate the efficacy of various fungicides, plant extracts, biocontrol agents and oil cakes against Macrophomina phaseolina causing dry root rot of chickpea. Among the tested biocontrol agents against Macrophomina phaseolina, T. viride was found the most effective against the fungus followed by T. harzianum, Bacillus subtalis and P. fluorescens was the least effective in reducing root rot incidence. Among the fungicides carbendazim was found most effective and recorded minimum root rot incidence. Among plant extracts, garlic extract was found most effective in reducing root rot incidence followed by neem leaf extract. In the case of organic amendments, Neem cake was the most effective in reducing the root rot incidence while wool waste and goat manure was found least effective in controlling root rot incidence.


2016 ◽  
Vol 8 (9) ◽  
pp. 205
Author(s):  
Asma Hanif ◽  
Shahnaz Dawar

<p>The aim of this study was to assess fungicidal potential of homeopathic globules namely <em>Thuja occidentalis</em> and <em>Arnica montana</em> (30C) on plant growth and root infecting fungi particularly <em>Rhizoctonia solani</em>,<em> Fusarium</em> spp. and <em>Macrophomina phaseolina.</em> Both <em>in vitro</em> and <em>in vivo</em> experiments had found positive results in the suppression of root rot fungi. Investigation on present study showed that <em>A. montana</em> and <em>T. occidentalis</em> globules (100, 75 and 50% v/w concentrations) reduced disease intensity caused by root rot pathogens and improved growth of test plants, but it produces negative effects on leguminous test crops in which nodules were failing to produce.</p>


Author(s):  
P. T. Sharavanan ◽  
V. K. Satya ◽  
M. Rajesh

Root rot of mung bean [Vigna radiata (L.) Wilczek var. radiata] is major disease and claims huge yield loss if they occur in the field. The pathogen is basically soil borne and survivability may vary depends on soil condition. The fungicide chemicals are available to manage the disease; however, the biocontrol agents are nowadays available for the disease management and the microbial activity of the biocontrol agents is influenced by existing soil condition including soil pH. Hence, a study was conducted to find out the halo tolerance capacity of the biocontrol agents against root rot disease in salt affected soils under in vitro, in vivo and field condition. The root rot pathogen Macrophomina phaseolina was isolated from infected root. Efficacy of biocontrol agents against growth of M. phaseolina was assessed in vitro. The results revealed that TNAU strain of Bacillus subtilis reduced the mycelial growth of the M. phaseolina significantly when media supplemented with NaCl at 5% (1.4 cm), 7.5% (1.5 cm), 10% (1.6cm) and 12.5% (1.6 cm) and without NaCl (1.2 cm) and similar trend of reduction also expressed by BCA1 strain of B. subtilis, Pseudomonas fluorescens and Trichoderma viride under in vitro. The performance of the biocontrol agents against the pathogen is slightly reduced when media supplemented with NaCl. The reduction of mycelia weight of M.phaeolina was more in media added with TNAU strain of B.subtilis and the performance of TNAU strain of B.subtilis on reduction of mycelial weight of M.phaseolina is reduced when the broth added with NaCl at 5% (3.15g), 7.5% (3.25g), 10% (3.32g) and 12.5%(3.65g) level and which is followed by P. fluorescens, BCA 1 strain of B. subtilis and Trichoderma viride. Under pot culture conditions, the effect of talc formulated biocontrol agents and challenge inoculation with pathogen was assessed against root rot incidence. It was found that the soil application of TNAU strain of B.subtilis performed better in reducing the root rot incidence at pH of 7.0 (2.37%), 7.5 (4.50%), 8.0 (5.53%) and 8.7 (6.57%) and followed by BCA 1 of B.subtilis in all pH level. Among the biocontrol agents, TNAU strain of B.subtilis applied as seed as well as soil application expressed more population in the rhizosphere in all pH level. The biocontrol agents applied as soil application had more populations of the agents in the soil when compared to seed treatment. The halo tolerance performance of the biocontrol agents was also assessed under field condition in pH of 7.5 and 8.7 during 2019-20 and 2020-21. It was found that the minimum root rot incidence and maximum yield was observed from soil application of TNAU strain of B subtilis at 2.5 kg/ha but the effect is on par with soil application of BCA1 strain of B.subtilis at 2.5 kg/ha.


Author(s):  
Mahabeer Singh ◽  
Jitendra Singh ◽  
Shivam Maurya ◽  
Sunil Kumar ◽  
A.K. Meena ◽  
...  

Macrophomina phaseolina (Tassi) Goid. is a soil- and seed-borne pathogen that causes charcoal rot and various rots and blights of more than 500 crop species. Dry root rot (DRR) also called as charcoal rot which causes yield loss ranged from 25-48 per cent. The pathogen is necrotroph and infects a wide range of crops. It is observed that mycelium of M. phaseolina in cotyledons, plumule and radicle, in the naturally infected seeds of mungbean and cowpea. The disease symptoms are clearly visible from the time of emergence and can be evaluated at various stages of development of the plant. The mechanical plugging of the xylem vessels by microsclerotia, toxin production, enzymatic action and mechanical pressure during penetration lead to disease development. Management of M. phaseolina aim to reduce the number of sclerotia in soil or to minimize the contact of the inoculum and the host. Soil solarization can be a cost-effective method for management of soil borne diseases. Disease suppression by biocontrol agents such as Trichoderma harzianum, T. viride and Bacillus subtilis are the sustained manifestation of interactions among the plant, the pathogen, the biocontrol agent, the microbial community on and around the plant and the physical environment and considerably inhibited growth of M. phaseolina. Essential oils and plant extracts contain a multitude of bioactive substances against fungi, bacteria and nematodes. It has been reported that neem oil, turmeric and garlic was effective against M. phaseolina in in vitro condition. Chemical control is an effective method when seed treatment and foliar spray of carbendazim, topsin M-70, captan, thiram, mancozeb, copper oxychloride against root rot and leaf blight (Macrophomina phaseolina) topsin M-70, captan, thiram, mancozeb, copper oxychloride against root rot (Macrophomina phaseolina). As non-chemical alternative methods can be time-consuming and less effective against soilborne plant pathogens. Chemical control is an effective method of controlling some soilborne diseases in agricultural crops. Varoius workers are reported compatibility of biocontrol agents with fungicides and found that Carbendazim and biocontrol agents Trichoderma viride, T. harizianum were found effective under in vitro and pot condition.


2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Amr H. Hashem ◽  
Amer M. Abdelaziz ◽  
Ahmed A. Askar ◽  
Hossam M. Fouda ◽  
Ahmed M. A. Khalil ◽  
...  

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.


BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


2020 ◽  
Vol 6 (4) ◽  
pp. 287
Author(s):  
Daniela Costa ◽  
Rui M. Tavares ◽  
Paula Baptista ◽  
Teresa Lino-Neto

An increase in cork oak diseases caused by Biscogniauxia mediterranea and Diplodia corticola has been reported in the last decade. Due to the high socio-economic and ecologic importance of this plant species in the Mediterranean Basin, the search for preventive or treatment measures to control these diseases is an urgent need. Fungal endophytes were recovered from cork oak trees with different disease severity levels, using culture-dependent methods. The results showed a higher number of potential pathogens than beneficial fungi such as cork oak endophytes, even in healthy plants. The antagonist potential of a selection of eight cork oak fungal endophytes was tested against B. mediterranea and D. corticola by dual-plate assays. The tested endophytes were more efficient in inhibiting D. corticola than B. mediterranea growth, but Simplicillium aogashimaense, Fimetariella rabenhorstii, Chaetomium sp. and Alternaria alternata revealed a high potential to inhibit the growth of both. Simplicillium aogashimaense caused macroscopic and microscopic mycelial/hyphal deformations and presented promising results in controlling both phytopathogens’ growth in vitro. The evaluation of the antagonistic potential of non-volatile and volatile compounds also revealed that A. alternata compounds could be further explored for inhibiting both pathogens. These findings provide valuable knowledge that can be further explored in in vivo assays to find a suitable biocontrol agent for these cork oak diseases.


Author(s):  
N. Kiran Kumar ◽  
P. Nagamani ◽  
K. Viswanath ◽  
L. Prasanthi

Background: The plant growth promotion and efficacy against phytopathogens by the endophytic bacteria are being focused now due to their ecofriendly nature. Methods: Endophytic bacteria (24 nos) isolated from the roots, stems and leaves of black gram plants collected from different locations were tested for their potential to inhibit the growth of R. bataticola under in vitro and in vivo conditions. Result: The leaf endophyte BLE 4 exhibited maximum inhibition (79.6%) of R. bataticola followed by BSE 4 (77.4%), BSE 7 (77.0%) and BLE 1 (74.0%). Among these 4 isolates tested as seed treatment and soil application, there was significant increase in dry weight (7.1 g), plant height (37.7 cm), number of branches (13.2) and number of pods (26.2) in BLE 4 treated plots. Whereas, the incidence of dry root rot and yield were insignificant. In the screening study of isolates for their phosphate solubilization potential, protease activity, siderophore and HCN production, no single isolate possessed all the properties, but siderophore production, protease activity and phosphate solubilization were found in BSE 4, BRE 3, BRE 5 and BRE 10 isolates. 


Sign in / Sign up

Export Citation Format

Share Document