Regulation of antioxidant enzymes by abscisic acid and salicylic acid under biotic stress caused by Fusarium fujikuroi in rice

Author(s):  
Megha Sakhuja ◽  
Vikramjit Kaur Zhawar ◽  
Pushpinder Pal Singh Pannu
Author(s):  
N.N. Iksat ◽  
◽  
D. Tokasheva ◽  
М.К. Beissekova ◽  
U.I. Amanbayeva ◽  
...  

Salicylic acid is a natural signaling molecule that plays a key role in establishing and transmitting plant protection signals from phytopathogens. Salicylic acid, by modulating the expression of protective genes and changing the activity of antioxidant enzymes, can regulate oxidative processes associated with plant protective reactions. This review article reviews studies that provide insight into the functioning of salicylic acid in plant immunity


2019 ◽  
Vol 72 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Amritpal Kaur ◽  
Vikramjit Kaur Zhawar ◽  
Pushpinder Pal Singh Pannu ◽  
Sucheta Sharma

2012 ◽  
Vol 60 (2) ◽  
pp. 131-141 ◽  
Author(s):  
V. Kovács ◽  
G. Vida ◽  
G. Szalai ◽  
T. Janda ◽  
M. Pál

Large numbers of wheat genotypes were grown under field conditions and screened for biotic stress tolerance and certain protective compounds. It was found that both the salicylic acid and polyamine contents of the investigated genotypes varied over a wide range, while the antioxidant enzyme activities showed a similar pattern in the different genotypes. In order to investigate stress-induced changes in salicylic acid and polyamine contents, samples were collected from plants artificially inoculated with leaf rust (Puccinia triticina), on which natural powdery mildew [Blumeria graminis (DC.) Speer f. sp. tritici Em. Marchal] infection also appeared. Biotic stress mostly resulted in elevated levels of total salicylic acid and polyamines in all the genotypes. The activities of various antioxidant enzymes showed similar changes after infection regardless of the genotype. The investigation was aimed at detecting a relationship between the level of stress tolerance and the contents of protective compounds, in particular salicylic acid and polyamines.


2015 ◽  
Vol 63 (37) ◽  
pp. 8134-8142 ◽  
Author(s):  
Ilenia Siciliano ◽  
Greice Amaral Carneiro ◽  
Davide Spadaro ◽  
Angelo Garibaldi ◽  
Maria Lodovica Gullino

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1316
Author(s):  
Abida Parveen ◽  
Muhammad Arslan Ashraf ◽  
Iqbal Hussain ◽  
Shagufta Perveen ◽  
Rizwan Rasheed ◽  
...  

The present work reports the assessment of the effectiveness of a foliar-spray of salicylic acid (SA) on growth attributes, biochemical characteristics, antioxidant activities and osmolytes accumulation in wheat grown under control (100% field capacity) and water stressed (60% field capacity) conditions. The total available water (TAW), calculated for a rooting depth of 1.65 m was 8.45 inches and readily available water (RAW), considering a depletion factor of 0.55, was 4.65 inches. The water contents corresponding to 100 and 60% field capacity were 5.70 and 1.66 inches, respectively. For this purpose, seeds of two wheat cultivars (Fsd-2008 and S-24) were grown in pots subjected to water stress. Water stress at 60% field capacity markedly reduced the growth attributes, photosynthetic pigments, total soluble proteins (TSP) and total phenolic contents (TPC) compared with control. However, cv. Fsd-2008 was recorded as strongly drought-tolerant and performed better compared to cv. S-24, which was moderately drought tolerant. However, water stress enhanced the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and membrane electrolyte leakage (EL) and modulated the activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as accumulation of ascorbic acid (AsA), proline (Pro) and glycine betaine (GB) contents. Foliar-spray with salicylic acid (SA; 0, 3 mM and 6 mM) effectively mitigated the adverse effects of water stress on both cultivars. SA application at 6 mM enhanced the shoot and root length, as well as their fresh and dry weights, and improved photosynthetic pigments. SA foliage application further enhanced the activities of antioxidant enzymes (SOD, POD, and CAT) and nonenzymatic antioxidants such as ascorbic acid and phenolics contents. However, foliar-spray of SA reduced MDA, H2O2 and membrane permeability in both cultivars under stress conditions. The results of the present study suggest that foliar-spray of salicylic acid was effective in increasing the tolerance of wheat plants under drought stress in terms of growth attributes, antioxidant defense mechanisms, accumulation of osmolytes, and by reducing membrane lipid peroxidation.


Plant Direct ◽  
2017 ◽  
Vol 1 (5) ◽  
pp. e00020 ◽  
Author(s):  
Murli Manohar ◽  
Dekai Wang ◽  
Patricia M. Manosalva ◽  
Hyong Woo Choi ◽  
Erich Kombrink ◽  
...  

2021 ◽  
Author(s):  
Jiajia Li ◽  
Dongmei Li ◽  
Boyang Liu ◽  
Ruiqi Wang ◽  
Yixuan Yan ◽  
...  

Abstract Endogenous plant hormones play important roles in germination, blossom, senescence, abscission of plants by a series of signal transduction and molecular regulation. The purpose of this research was to investigate the influence of root restriction (RR) cultivation on plant hormones variation tendency at different growth stages in diverse organs or tissues, ‘Muscat Hamburg’ (Vitis ‘Muscat of Alexandria’ × Vitis ‘Trollinger’) grapevine was used as test material. High Performance Liquid Chromatography (HPLC) was used to quantify hormone levels, aiming to investigate the influence of root restriction on the formation and transportation of plant hormones. The results revealed that RR treatment increased abscisic acid, salicylic acid, zeatin riboside, N6-(delta 2-isopentenyl)-adenine nucleoside concentrations, while reduced auxin, 3-indolepropionic acid, 3-indolebutyric acid, gibberellin A3, zeatin, N6-(delta 2-Isopentenyl)-adenine, kinetin, jasmonic acid and methyl jasmonate concentrations. To sum up, our results suggested that RR treatment could initiate stress responses via up-regulating abscisic acid and salicylic acid contents while down-regulating auxin and kinetin contents, resulting in the changes of fruit appearance and improvement of berry quality.


Sign in / Sign up

Export Citation Format

Share Document