scholarly journals Salicylic acid and its role in induced plant resistance to biotic stress

Author(s):  
N.N. Iksat ◽  
◽  
D. Tokasheva ◽  
М.К. Beissekova ◽  
U.I. Amanbayeva ◽  
...  

Salicylic acid is a natural signaling molecule that plays a key role in establishing and transmitting plant protection signals from phytopathogens. Salicylic acid, by modulating the expression of protective genes and changing the activity of antioxidant enzymes, can regulate oxidative processes associated with plant protective reactions. This review article reviews studies that provide insight into the functioning of salicylic acid in plant immunity

2012 ◽  
Vol 60 (2) ◽  
pp. 131-141 ◽  
Author(s):  
V. Kovács ◽  
G. Vida ◽  
G. Szalai ◽  
T. Janda ◽  
M. Pál

Large numbers of wheat genotypes were grown under field conditions and screened for biotic stress tolerance and certain protective compounds. It was found that both the salicylic acid and polyamine contents of the investigated genotypes varied over a wide range, while the antioxidant enzyme activities showed a similar pattern in the different genotypes. In order to investigate stress-induced changes in salicylic acid and polyamine contents, samples were collected from plants artificially inoculated with leaf rust (Puccinia triticina), on which natural powdery mildew [Blumeria graminis (DC.) Speer f. sp. tritici Em. Marchal] infection also appeared. Biotic stress mostly resulted in elevated levels of total salicylic acid and polyamines in all the genotypes. The activities of various antioxidant enzymes showed similar changes after infection regardless of the genotype. The investigation was aimed at detecting a relationship between the level of stress tolerance and the contents of protective compounds, in particular salicylic acid and polyamines.


Coronaviruses ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 49-56
Author(s):  
Gaurav M. Doshi ◽  
Hemen S. Ved ◽  
Ami P. Thakkar

The World Health Organization (WHO) has recently announced the spread of novel coronavirus (nCoV) globally and has declared it a pandemic. The probable source of transmission of the virus, which is from animal to human and human to human contact, has been established. As per the statistics reported by the WHO on 11th April 2020, data has shown that more than sixteen lakh confirmed cases have been identified globally. The reported cases related to nCoV in India have been rising substantially. The review article discusses the characteristics of nCoV in detail with the probability of potentially effective old drugs that may inhibit the virus. The research may further emphasize and draw the attention of the world towards the development of an effective vaccine as well as alternative therapies. Moreover, the article will help to bridge the gap between the new researchers since it’s the current thrust area of research.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1316
Author(s):  
Abida Parveen ◽  
Muhammad Arslan Ashraf ◽  
Iqbal Hussain ◽  
Shagufta Perveen ◽  
Rizwan Rasheed ◽  
...  

The present work reports the assessment of the effectiveness of a foliar-spray of salicylic acid (SA) on growth attributes, biochemical characteristics, antioxidant activities and osmolytes accumulation in wheat grown under control (100% field capacity) and water stressed (60% field capacity) conditions. The total available water (TAW), calculated for a rooting depth of 1.65 m was 8.45 inches and readily available water (RAW), considering a depletion factor of 0.55, was 4.65 inches. The water contents corresponding to 100 and 60% field capacity were 5.70 and 1.66 inches, respectively. For this purpose, seeds of two wheat cultivars (Fsd-2008 and S-24) were grown in pots subjected to water stress. Water stress at 60% field capacity markedly reduced the growth attributes, photosynthetic pigments, total soluble proteins (TSP) and total phenolic contents (TPC) compared with control. However, cv. Fsd-2008 was recorded as strongly drought-tolerant and performed better compared to cv. S-24, which was moderately drought tolerant. However, water stress enhanced the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and membrane electrolyte leakage (EL) and modulated the activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as accumulation of ascorbic acid (AsA), proline (Pro) and glycine betaine (GB) contents. Foliar-spray with salicylic acid (SA; 0, 3 mM and 6 mM) effectively mitigated the adverse effects of water stress on both cultivars. SA application at 6 mM enhanced the shoot and root length, as well as their fresh and dry weights, and improved photosynthetic pigments. SA foliage application further enhanced the activities of antioxidant enzymes (SOD, POD, and CAT) and nonenzymatic antioxidants such as ascorbic acid and phenolics contents. However, foliar-spray of SA reduced MDA, H2O2 and membrane permeability in both cultivars under stress conditions. The results of the present study suggest that foliar-spray of salicylic acid was effective in increasing the tolerance of wheat plants under drought stress in terms of growth attributes, antioxidant defense mechanisms, accumulation of osmolytes, and by reducing membrane lipid peroxidation.


Poljoprivreda ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 15-24
Author(s):  
Magdalena Matić ◽  
◽  
Rosemary Vuković ◽  
Karolina Vrandečić ◽  
Ivna Štolfa Čamagajevac ◽  
...  

During cultivation, wheat is exposed to several abiotic and/or biotic stress conditions that may adversely impact the wheat yield and quality. The impact of abiotic stress caused by nitrogen deficiency and biotic stress caused by phytopathogenic fungus Fusarium culmorum on biomarkers of oxidative stress in the flag leaf of nine winter wheat varieties (Ficko, U-1, Galloper, BC Mandica, BC Opsesija, Ingenio, Isengrain, Felix, and Bezostaya-1) was analyzed in this study. Hydrogen peroxide concentration and lipid peroxidation level were measured as indicators of oxidative stress, while the antioxidant response was determined by measuring the concentration of phenolic compounds and activities of antioxidant enzymes. Wheat variety and nitrogen treatment had a significant effect on all examined biomarkers of oxidative stress in the flag leaf, while the impact of Fusarium treatment was less pronounced. The most significant impact on the measured stress biomarkers had a low nitrogen level, which mainly increased hydrogen peroxide concentration and lipid peroxidation level and decreased activities of antioxidant enzymes in most varieties. The obtained results were discussed and compared with the previous study in which biochemical analyzes were performed on the wheat spike. There was no significant strong correlation between flag leaf and spike response in the measured parameters, which, in addition to the variety-specific response, also indicates a tissue-specific antioxidant response.


2018 ◽  
Vol 31 (12) ◽  
pp. 1271-1279 ◽  
Author(s):  
Xiaochen Jia ◽  
Haihong Zeng ◽  
Wenxia Wang ◽  
Fuyun Zhang ◽  
Heng Yin

Chitosan oligosaccharide (COS) is an effective plant immunity elicitor; however, its induction mechanism in plants is complex and needs further investigation. In this study, the Arabidopsis–Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000) interaction was used to investigate the induction effect and the underlying mechanisms of COS. COS is effective in inducing resistance to DC3000 in Arabidopsis, and our results demonstrate that treatment with COS 3 days before DC3000 inoculation provided the most effective resistance. Disease severity in jar1 (jasmonic acid [JA]-deficient mutant), NahG, and sid2 (salicylic acid [SA]-deficient mutants) suggest both the SA and JA pathways are required for the Arabidopsis response to DC3000. COS pretreatment induced resistance in wild type (WT), jar1, and also, although to a lesser degree, in NahG and sid2 plants, implying that the SA and JA pathways play redundant roles in COS-induced resistance to DC3000. In COS-pretreated plants, expression of genes related to the SA pathway (PR1, PR2, and PR5) and SA content increased in both WT and jar1. Moreover, expression of genes related to the JA pathway (PDF1.2 and VSP2) and JA content both increased in WT and NahG. In conclusion, COS induces resistance to DC3000 in Arabidopsis by activating both SA- and JA-mediated pathways, although SA and JA pathways play redundant roles in this COS-induced resistance.


Pharmacy ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 110 ◽  
Author(s):  
Yuman Lee ◽  
Nicole Bradley

Understanding antibiotic allergies and the risk of cross-sensitivity between and within antibiotic classes can have a substantial impact on patient care. The purpose of this review article is to provide insight into carbapenem allergies, describing the overall incidence, risk factors, and in-class cross-sensitivity. A PubMed search was conducted using the following search terms: carbapenem, allergy, cross-sensitivity, incidence, imipenem/cilastatin, meropenem, ertapenem, and doripenem. Article bibliographies and relevant drug monographs were also reviewed. The overall reported incidence of carbapenem allergy is 0.3%–3.7%. Risk of cross-sensitivity between penicillins and carbapenems is less than 1% in patients with a positive penicillin skin test. Data on cross-sensitivity between cephalosporins and carbapenems are limited; however, the risk appears to also be low. No clinical studies have described cross-sensitivity between the carbapenem agents thus far. The limited data available from case reports demonstrates a lack of cross-sensitivity between the individual carbapenems, suggesting that an alternative carbapenem may cautiously be used in patients with a reported carbapenem allergy.


2020 ◽  
Vol 21 (14) ◽  
pp. 4853 ◽  
Author(s):  
Anna Rajska ◽  
Magdalena Buszewska-Forajta ◽  
Dominik Rachoń ◽  
Michał Jan Markuszewski

Searching for the mechanisms of the polycystic ovary syndrome (PCOS) pathophysiology has become a crucial aspect of research performed in the last decades. However, the pathogenesis of this complex and heterogeneous endocrinopathy remains unknown. Thus, there is a need to investigate the metabolic pathways, which could be involved in the pathophysiology of PCOS and to find the metabolic markers of this disorder. The application of metabolomics gives a promising insight into the research on PCOS. It is a valuable and rapidly expanding tool, enabling the discovery of novel metabolites, which may be the potential biomarkers of several metabolic and endocrine disorders. The utilization of this approach could also improve the process of diagnosis and therefore, make treatment more effective. This review article aims to summarize actual and meaningful metabolomic studies in PCOS and point to the potential biomarkers detected in serum, urine, and follicular fluid of the affected women.


Sign in / Sign up

Export Citation Format

Share Document