scholarly journals Effects of sintering temperature and particle size on permeability of functionally gradient composite porous materials prepared by hanging slurry process

2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Shuai Ji ◽  
Zhongjun Liu ◽  
Gaosong Wang ◽  
Yuan Liu ◽  
Yuan Jing
Rare Metals ◽  
2009 ◽  
Vol 28 (4) ◽  
pp. 405-411 ◽  
Author(s):  
Yong Xie ◽  
Changming Liu ◽  
Yanbo Zhai ◽  
Kai Wang ◽  
Xuedong Ling

2021 ◽  
pp. 2150024
Author(s):  
C. VELMURUGAN ◽  
V. SENTHILKUMAR

The present study investigates the superelasticity properties of spark plasma sintered (SPS) nickel titanium shape memory alloy (NiTi SMA) with the influence of sintering temperature and particle size. The nanoindentation is conducted on the surface of the NiTi SMA at various loads such as 100, 300 and 500[Formula: see text]mN. The nanoindentation technique determines the quantitative results of elasto-plastic properties such as depth recovery in the form of superelasticity, stiffness, hardness and work recovery ratio from load–depth ([Formula: see text]–[Formula: see text]) data during loading and unloading of the indenter. Experimental findings show that the depth and work recovery ratio increases with the decrease of indentation load and particle size. In contrast, increasing the sintering temperature exhibited a better depth and work recovery due to the removal of pores which could enhance the reverse transformation. The contact stiffness is influenced by [Formula: see text] which leads to attain a maximum stiffness at the highest load (500[Formula: see text]mN) and particle size (45[Formula: see text][Formula: see text]m) along with the lowest sintering temperature (700∘C). NiTi alloy exhibited a maximum hardness of 9.46[Formula: see text]GPa when subjected to indent at the lowest load and particle size sintered at 800∘C. The present study reveals a better superelastic behavior in NiTi SMA by reducing the particle size and indentation load associated with the enhancement of sintering temperature.


1998 ◽  
Vol 13 (5) ◽  
pp. 1255-1259 ◽  
Author(s):  
Sung Kang Hur ◽  
Sang H. Yoo ◽  
Joanna R. Groza ◽  
Jung Man Doh ◽  
Kazuo Yamazaki ◽  
...  

Functionally gradient materials (FGM) were prepared using layers of ZrO2 –3 mol% Y2O3 ceramic and NiCrAlY powders. A fine-grained zirconia powder was chosen to lower the ceramic sintering temperature and achieve simultaneous metal and ceramic densification. Consolidation of FGM's was achieved by a short time field-assisted sintering technique. Sintering was performed either at a constant temperature or in a temperature gradient by using punches made of different materials (i.e., one graphite and one tungsten). A temperature gradient of at least 100 °C was required with a low value of 1200 °C at the metal end and exceeding 1300 °C at the ceramic end. Increasing the number of intermediate layers alleviates some of the cracks formed during sintering due to different coefficients of thermal expansion.


2020 ◽  
Vol 58 (11-12) ◽  
pp. 737-742
Author(s):  
Yingshui Yu ◽  
Chenglong Yao ◽  
Yubo Zhang ◽  
Guangye Xu ◽  
Tingju Li ◽  
...  

2014 ◽  
Vol 906 ◽  
pp. 18-24 ◽  
Author(s):  
Bao Lin Zhang ◽  
Bin Bin Zhang ◽  
Ning Ning Wang ◽  
Jing Ming Fei

The effect of milling time and sintering process on the dielectric properties of BaTiO3-based X9R ceramics was investigated. The characterization of the raw powders and the sintered ceramic was carried out by X-ray diffraction and scanning electron microscopy. The particle size distribution of the mixed powders was examined by Laser Particle Size Analyzer. The results shown that with the milling time extended, the Cruie Peak was depressed, or even disappeared. Moreover, with the rise of sintering temperature, the dielectric constant of the ceramics increased and the dielectric loss decreased gradually. Eventually, by milling for 11h and sintering at 1090°Cfor 2h, good dielectric properties were obtained, which were ε25°C≥ 2526, εr/εr25°C≤± 12% (–55~200°C), tanδ≤1.12% (25°C).


2021 ◽  
Vol 484 ◽  
pp. 229252
Author(s):  
Marissa Wood ◽  
Xiaosi Gao ◽  
Rongpei Shi ◽  
Tae Wook Heo ◽  
Jose Ali Espitia ◽  
...  

2007 ◽  
Vol 537-538 ◽  
pp. 519-526
Author(s):  
David Felhös ◽  
Karoly Váradi ◽  
Klaus Friedrich

Rollers of three different material structures were examined: rollers consisting of pure EP resin; homogeneous EP/SiC composite rollers containing 5 vol.% SiC; and EP/SiC composite rollers with functionally gradient (FG) material structure. Wear tests were performed on the rollers. The wear tests showed that rollers of gradient structure are the most wear-resistant of all. Microhardness measurements were performed on the materials of the three different rollers. SEM images were made of the surface of wear traces. In order to get to know better the effect of SiC reinforcement particles on the wear mechanism, microhardness measurements were simulated by 3D FE micro-models. The SEM images and the FE models were used to explain the excellent wear behavior of the tread of rollers with gradient material distribution.


Sign in / Sign up

Export Citation Format

Share Document