Effect of Process on the Dielectric Properties of BaTiO3-Based X9R Ceramics

2014 ◽  
Vol 906 ◽  
pp. 18-24 ◽  
Author(s):  
Bao Lin Zhang ◽  
Bin Bin Zhang ◽  
Ning Ning Wang ◽  
Jing Ming Fei

The effect of milling time and sintering process on the dielectric properties of BaTiO3-based X9R ceramics was investigated. The characterization of the raw powders and the sintered ceramic was carried out by X-ray diffraction and scanning electron microscopy. The particle size distribution of the mixed powders was examined by Laser Particle Size Analyzer. The results shown that with the milling time extended, the Cruie Peak was depressed, or even disappeared. Moreover, with the rise of sintering temperature, the dielectric constant of the ceramics increased and the dielectric loss decreased gradually. Eventually, by milling for 11h and sintering at 1090°Cfor 2h, good dielectric properties were obtained, which were ε25°C≥ 2526, εr/εr25°C≤± 12% (–55~200°C), tanδ≤1.12% (25°C).

2018 ◽  
Vol 34 (6) ◽  
pp. 3088-3094 ◽  
Author(s):  
Abdul Wahid Wahab ◽  
Abdul Karim ◽  
Nursiah La Nafie ◽  
Nurafni Nurafni ◽  
I. Wayan Sutapa

Silver nanoparticles have been synthesized by reduction method using extract of Muntingia calabura L. leaf a bioreductor. The process of silver nanoparticles formation was monitored by UV-Vis method. The results showed that the absorbance values increased according to the increase of reaction time. Maximum absorption of silver nanoparticle was obtained at a wavelength of 41-421 nm. The size of silver nanoparticles was determined using a PSA (Particle Size Analyzer) with a particle size distribution of 97.04 nm. The functional groups compound that contribute in the synthesis was analyzed using Fourier Transform Infrared Spectroscopy (FTIR). Morphology of the silver nanoparticles was observed by an Scanning Electron Microscope instrument and the structure characterization of the compounds were analyzed using X-Ray Diffraction. The glucose nanosensor based on silver nanoparticles have the measurement range of 1 mM - 4 mM with the regretion (R2) is 0,9516, the detection limit of sensor is 3,2595 mM, the sensitivity of sensor is 2,0794 A. mM-1. mM-2.


2001 ◽  
Vol 703 ◽  
Author(s):  
Ann M. Viano ◽  
Sanjay R. Mishra

ABSTRACTNanocomposite iron nitride based powders are known to have enhanced magnetic and other physical properties. To further explore their potential for application in various fields, we have performed a systematic study of the iron nitride - alumina and iron nitride - silica systems. Iron nitride powder of composition FexN (2 < x < 4), containing both Fe3N and Fe4N phases, was mechanically milled with Al2O3 or SiO2 powder for 4, 8, 16, 32, and 64 hours at the following compositions; (FexN)0.2(Al2O3)0.8, (FexN)0.6(Al2O3)0.4, (FexN)0.2(SiO2)0.8, and (FexN)0.6(SiO2)0.4. Differential thermal analysis and X-ray diffraction were performed to investigate thermal and structural transitions as a function of milling time. As the milling time is increased, the thermal peak corresponding to Fe4N is diminished, while the one corresponding to Fe3N is enhanced. These transitions are correlated with X-ray diffraction patterns. All XRD peaks broaden as a function of milling time, corresponding to smaller particle size. Transmission electron microscopy also reveals a decrease in particle size as the milling time in increased.


2011 ◽  
Vol 347-353 ◽  
pp. 1342-1347 ◽  
Author(s):  
Ping Ren ◽  
Li Cheng Zhou ◽  
Jun Xi Zhang ◽  
Hong Yun

The synthesis mechanism and microstructures of BaIn2O4 particles were analyzed by simultaneous thermogravimetry - differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). Firstly, In(OH)3 and BaCO3 precursors were prepared by the co-precipitation method. Next, during the sintering process In(OH)3 initially decomposed into In2O3 and water, and then BaCO3 reacted with In2O3 to synthesize Ba4In6O13. Finally, Ba4In6O13 and In2O3 further reacted to form BaIn2O4. The obtained BaIn2O4 particles were in monoclinic structure and exhibited high crystal quality. The grains were tightly bound together and their boundaries became blurry. The grain sizes increased with increasing the sintering temperature.


Author(s):  
Haiquan Wang ◽  
Shixuan Li ◽  
Kangguo Wang ◽  
Xiuli Chen ◽  
Huanfu Zhou

AbstractThis study investigates the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 series ceramics synthesised by solid-state reaction. According to the X-ray diffraction and microstructural analyses, the as-prepared MgO-2B2O3 ceramics possess a single-phase structure with a rod-like morphology. The effects of different quantities of H3BO3 and BaCu(B2O5) (BCB) on the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 ceramics were investigated. Accordingly, the optimal sintering temperature was obtained by adding 30 wt% H3BO3 and 8 wt% BCB. We also reduced the sintering temperature to 825 °C. Furthermore, the addition of 40 wt% H3BO3 and 4 wt% BCB increased the quality factor, permittivity, and temperature coefficient of resonance frequency of MgO-2B2O3 to 44,306 GHz (at 15 GHz), 5.1, and −32 ppm/°C, respectively. These properties make MgO-2B2O3 a viable low-temperature co-fired ceramic with broad applications in microwave dielectrics.


2018 ◽  
Vol 9 (2) ◽  
pp. 619-629
Author(s):  
Aditya Bayu Hanura ◽  
Wini Trilaksani ◽  
Pipih Suptijah

Tuna Thunnus sp is a high-value fisheries products. The abundance of waste from tuna’s processing industry has not been used optimally. The objective of this study was to produce and characterize nanohidroxyapatite (Ca5(PO4)3((OH)0.8F0.2) of tuna’s Thunnus sp bone waste using high temperature sintering of 400-800OC continuing by nanomilling method. The results of the characterization showed that the sintering temperature of 800OC was the best treatment yielding of hidroxyapatite 57.73%, 89.27% white degree level. The result of statistic analysis showed that the sintering temperature variation gave a significant effect on the white degree at the test level (p <0.05). Proximate result after sintering showed moisture content of 0.15%, 99.83% ash, 0.05% fat, 0.73% protein and 0% crude fiber. Results of heavy metal analysis showed the content of lead (Pb) and mercury (Hg) was negative, and cadmium (Cd) 0.018 ppm. The mineral test consist of calcium, phosphor, kalium, magnesium, iron, zinc, manganese, and sodium with the dominant elements were 49.76% calcium and 9.02% phosphor. The result of statistic analysis showed that the sintering temperature variation gave significant effect to the three main minerals at the test level (p<0.05). The Particle Size Analyzer test showed that nanohidroxyapatite particles was measured at 800-900 nm. The X-Ray Diffractometer analysis showed the results of sample identification contains hydroxyapatite and fluorian, with syn 100.00%. The hidroxyapatite was a compound complex and crystals formed has a hexagonal shape with a percentage of 82.9% crystallinity. Keywords : bone, nanohidroxyapatite, particles, sintering, tuna


2013 ◽  
Vol 750-752 ◽  
pp. 506-511
Author(s):  
Yuan Yuan Li ◽  
Gui Xia Dong ◽  
Bi Yan Zhu ◽  
Qiu Xiang Liu ◽  
Di Wu

As a research object, the samples with various Ba/Ti ratios (Ba/Ti=0.95~1.05) were synthesized by solid phase reaction method. Effect of sintering temperatures and Ba/Ti ratio on dielectric properties and crystal structure of BaTiO3ceramic were investigated. Crystal structure and crystal phase composition were investigated by scanning electron microscopy and X-ray diffraction. The dielectric properties were studied by Agilent 4294A at 1 kHz. The results show that the BaTiO3ceramic has high permittivity and dielectric loss at 1340°C. The permittivity of BaTiO3ceramic with Ba/Ti=0.95 change small as the sintering temperatures vary at 1320°C. With the increasing of Ba/Ti ratio, the Curie temperature first increases and then decreases as the sample sintering at 1320°C. When Ba/Ti=1, the Curie temperature increase with the sintering temperature increasing.


2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


2010 ◽  
Vol 434-435 ◽  
pp. 850-852
Author(s):  
Qi Wang ◽  
Bo Yin ◽  
Zhen Wang ◽  
Gen Li Shen ◽  
Yun Fa Chen

In present work, ceria microspheres were synthesized by template hydrothermal method. Crystalline form of the as-synthesized ceria microspheres was defined by X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Dispersibility of ceria microspheres was comprehensively characterized using scanning electron microscope (SEM) observation and laser particle size analyzer. Furthermore, the ultraviolet light absorption performances of ceria microspheres with several different sizes were compared by ultraviolet visible spectrophotometer. The results showed that ceria microspheres presented excellent UV absorbent property and the size influence was remarkable.


2006 ◽  
Vol 510-511 ◽  
pp. 710-713
Author(s):  
Hwan Tae Kim ◽  
Won Sik Seo ◽  
Dae Hwan Kwon ◽  
Pyuck Pa Choi ◽  
Ji Soon Kim ◽  
...  

Nanosize nickel powders were successfully produced by electrical explosion of wire (EEW). In EEW, the nickel wire was discharged in a chamber filled with nitrogen or argon gas, and the produced powders were subsequently stabilized by air-passivation at room temperature for 2 h. X-ray diffraction only showed the nickel phase of FCC crystal structure, whereas TEM and XPS analyses showed the formation of a very thin oxide layer of NiO on the surface of particles. Particles were spherical in shape, and the mean particle size calculated by specific surface area was about 100 nm. The particle size decreased with increasing charging voltage and with increasing ambient gas pressure. Argon gas was more effective in producing finer particles than nitrogen gas.


2011 ◽  
Vol 672 ◽  
pp. 157-160
Author(s):  
Ionel Chicinaş ◽  
Viorel Pop ◽  
Florin Popa ◽  
Virgiliu Călin Prică ◽  
Traian Florin Marinca ◽  
...  

The formation of quaternary 76Ni17Fe5Cu2Cr (wt. %) alloy by mechanical alloying is investigated. The elemental powders of Ni, Fe, Cu and Cr where milled in argon atmosphere in a planetary ball mill for time up to 20 h. Formation of the alloy was checked by X-ray diffraction studies. It is found that the rapid formation of the alloy lead to the rapid establishment of an equilibrium between the welding and fracture process during milling, leading to a constant particle size distribution over a big range of milling time. The morphology of the powders, studied by scanning electron microscopy (SEM) confirms the rapid increase in size. The particle size distribution and the flowability of the powders are also analyzed as a function of milling time. Enhanced magnetization was found for the milled samples, compared to a cast alloy.


Sign in / Sign up

Export Citation Format

Share Document