scholarly journals Optimization of process parameters for turning of titanium alloy (Grade II) in MQL environment using multi-CI algorithm

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Apoorva Shastri ◽  
Aniket Nargundkar ◽  
Anand J. Kulkarni ◽  
Luigi Benedicenti

AbstractThe advancement of materials science during the last few decades has led to the development of many hard-to-machine materials, such as titanium, stainless steel, high-strength temperature-resistant alloys, ceramics, refractories, fibre-reinforced composites, and superalloys. Titanium is a prominent material and widely used for several industrial applications. However, it has poor machinability and hence efficient machining is critical. Machining of titanium alloy (Grade II) in minimum quantity lubrication (MQL) environment is one of the recent approaches towards sustainable manufacturing. This problem has been solved using various approaches such as experimental investigation, desirability, and with optimization algorithms. In the group of socio-inspired optimization algorithm, an artificial intelligence (AI)-based methodology referred to as Cohort Intelligence (CI) has been developed. In this paper, CI algorithm and Multi-CI algorithm have been applied for optimizing process parameters associated with turning of titanium alloy (Grade II) in MQL environment. The performance of these algorithms is exceedingly better as compared with particle swarm optimization algorithm, experimental and desirability approaches. The analysis regarding the convergence and run time of all the algorithms is also discussed. It is important to mention that for turning of titanium alloy in MQL environment, Multi-CI achieved 8% minimization of cutting force, 42% minimization of tool wear, 38% minimization of tool-chip contact length, and 15% minimization of surface roughness when compared with PSO. For desirability and experimental approaches, 12% and 8% minimization of cutting force, 42% and 47% minimization of tool wear, 53% and 40% minimization of tool-chip contact length, and 15% and 20% minimization of surface roughness were attained, respectively.

Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


Author(s):  
N. J. Churi ◽  
Z. C. Li ◽  
Z. J. Pei ◽  
C. Treadwell

Due to their unique properties, titanium alloys are attractive for some unique applications especially in the aerospace industry. However, it is very difficult to machine these materials cost-effectively. Although many conventional and non-conventional machining methods have been reported for machining them, no reports can be found in the literature on rotary ultrasonic machining of titanium alloys. This paper presents an experimental study on rotary ultrasonic machining of a titanium alloy. The tool wear, cutting force, and surface roughness when rotary ultrasonic machining of the titanium alloy have been investigated using different tool designs and machining conditions. The results are compared with those when machining the same material with diamond grinding.


2016 ◽  
Vol 693 ◽  
pp. 1009-1014 ◽  
Author(s):  
Su Lin Chen ◽  
Bin Shen ◽  
Fang Hong Sun

This paper presents a study of the influence of cutting conditions (cutting velocity, feed, cutting depth and lubrication) on turning TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) titanium alloy. Taguchi methodology design was adopt for carrying out experiments. Turning process parameters such as cutting speed, feed rate and depth of cut were varied to study their effect on process responses such as cutting force (Ft), surface roughness (Ra) and temperature on cutting zones (T). Minimum quantity lubrication (MQL) technology was adopt to increase the lubricating and cooling effect. Meanwhile, CVD diamond coating was deposited on the cemented carbide insert to reduce its friction with workpiece and increase its wear resistance. From the analysis of orthogonal tests, depth of cut contributes the most for the main cutting force and cutting temperature, while feed rate had the most significant effect on surface roughness on the workpiece. MQL can reduce the cutting temperature at the cutting zones, especially for the uncoated cutting inserts whose temperature decreases by an average of 60~80°C. The cutting force, surface roughness and cutting temperature of CVD diamond coated inserts were all higher than those of uncoated tools, especially with MQL lubrication. Considering the cutting efficiency and cost, the optimal parameters in the turning process of TC11 for minimizing the cutting force, surface roughness and cutting temperature are obtained as Vc=115m/min, f=0.08mm, ap=0.5mm under MQL lubricating with uncoated cemented carbide as the cutting tool.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 168 ◽  
Author(s):  
Jianbing Meng ◽  
Bingqi Huang ◽  
Xiaojuan Dong ◽  
Yizhong Hu ◽  
Yugang Zhao ◽  
...  

There are high cutting temperatures, large tool wear, and poor tool life in conventional machining, owing to the superior strength and low thermal conductivity of titanium alloy. In this work, ultrasonic atomization assisted turning (UAAT) of Ti6Al4V was performed with a mixed water-soluble oil-based cutting fluid, dispersed into tiny droplets by the high frequency vibration of a piezoelectric crystal. Different cutting speeds and two machining environments, dry and ultrasonic atomization assisted machining, were considered in the investigation of tool life, tool wear morphology, surface roughness, and chip morphology. In comparison with dry machining, UAAT shows lower tool wear and longer tool life due to the advantages of cooling and lubrication. Furthermore, better surface roughness, smoother chip edges, and shorter tool-chip contact length were obtained with UAAT.


2008 ◽  
Vol 389-390 ◽  
pp. 277-282 ◽  
Author(s):  
Shigeomi Koshimizu

Although titanium is a very useful material and becoming more in demand, we are faced with difficulties in machining the material. By applying ultrasonic vibration to the tool tip, interrupted cutting can be applied. Using ultrasonic vibration-assisted cutting of titanium alloy, we succeeded in reducing the cutting force. This technology enables us to improve tool wear and surface roughness of the workpiece. In regards to cutting fluid supply methods, it was found that semi-dry cutting was the most suitable for ultrasonic vibration-assisted cutting of titanium alloy.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


Author(s):  
Gabriele Piscopo ◽  
Alessandro Salmi ◽  
Eleonora Atzeni

AbstractThe production of large components is one of the most powerful applications of laser powder-directed energy deposition (LP-DED) processes. High productivity could be achieved, when focusing on industrial applications, by selecting the proper process parameters. However, it is of crucial importance to understand the strategies that are necessary to increase productivity while maintaining the overall part quality and minimizing the need for post-processing. In this paper, an analysis of the dimensional deviations, surface roughness and subsurface residual stresses of samples produced by LP-DED is described as a function of the applied energy input. The aim of this work is to analyze the effects of high-productivity process parameters on the surface quality and the mechanical characteristics of the samples. The obtained results show that the analyzed process parameters affect the dimensional deviations and the residual stresses, but have a very little influence on surface roughness, which is instead dominated by the presence of unmelted particles.


Sign in / Sign up

Export Citation Format

Share Document