scholarly journals Experimental Investigation on Ultrasonic Atomization Assisted Turning of Titanium Alloy

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 168 ◽  
Author(s):  
Jianbing Meng ◽  
Bingqi Huang ◽  
Xiaojuan Dong ◽  
Yizhong Hu ◽  
Yugang Zhao ◽  
...  

There are high cutting temperatures, large tool wear, and poor tool life in conventional machining, owing to the superior strength and low thermal conductivity of titanium alloy. In this work, ultrasonic atomization assisted turning (UAAT) of Ti6Al4V was performed with a mixed water-soluble oil-based cutting fluid, dispersed into tiny droplets by the high frequency vibration of a piezoelectric crystal. Different cutting speeds and two machining environments, dry and ultrasonic atomization assisted machining, were considered in the investigation of tool life, tool wear morphology, surface roughness, and chip morphology. In comparison with dry machining, UAAT shows lower tool wear and longer tool life due to the advantages of cooling and lubrication. Furthermore, better surface roughness, smoother chip edges, and shorter tool-chip contact length were obtained with UAAT.

Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


2016 ◽  
Vol 836-837 ◽  
pp. 132-138 ◽  
Author(s):  
Shu Cai Yang ◽  
Xiao Yang Cui ◽  
Yu Hua Zhang ◽  
Zhi Wei Wang

Tool wear is easy occurred in titanium alloy milling process which will affect the surface quality. Surface roughness and surface morphology as an important index to describe and evaluate the surface quality has a great influence on service performance. Therefore, the study on the effect of tool wear on surface qualities is important to improve the surface integrity of titanium alloy parts. Cutting radius of ball-end milling cutter is solved to analyze the effect of tool wear on the cutting radius. The tool wear and the surface qualities of TC4 are achieved through wear experiment. And then the influence law of tool wear on surface qualities and chip morphology are analyzed. The results show that surface roughness value decrease firstly and then increases and that chip morphology with flank wear increase from the unit chip to the serrated chip.


2010 ◽  
Vol 97-101 ◽  
pp. 2058-2061 ◽  
Author(s):  
Hui Wang ◽  
Rong Di Han ◽  
Yang Wang

The machinability of Titanium Alloy Ti6Al4V is poor, the traditional methods to machining is application of cutting fluids with the active additives which cause environmental pollution and health problems. In this paper, the dry electrostatic cooling was applied instead of cutting fluid for the aim of green cutting Ti6Al4V. The ionized device and gas supply system was set up, the effects of dry electrostatic cooling, emulsion oil and dry cutting on tool wear have been examined in turning of Ti6Al4V with carbide tools YG8, the curve between tool flank wear and cutting time was proposed, and the equation between cutting speed and tool life was set up. The results of experiments indicated that application of dry electrostatic cooling reduced the tool wear and increased the tool life. The research results show that clean production was achieved in metal cutting associated with dry electrostatic cooling.


2017 ◽  
Vol 749 ◽  
pp. 101-106
Author(s):  
Toshiaki Wakabayashi ◽  
Keisuke Yamada ◽  
Shota Koike ◽  
Toshifumi Atsuta

Because of effective machining operations with a very small amount of cutting fluids, near-dry machining attracts increasing attentions for environmental and economical benefits. MQL machining has so far been recognized as the most representative near-dry method and it is highly successful in machining of most ordinary steels. Recent concern for environmentally friendly manufacturing further encourages the attempts at applying near-dry operations to machining of difficult-to-cut materials. Since titanium alloys are typical difficult-to-cut materials, this paper investigates the cutting performance of various near-dry methods in turning of a titanium alloy from the view point of elongating the tool life. Those near-dry operations include supply methods of regular MQL mist, coolant mist and hybrid mists, where the coolant mist is atomized water-soluble cutting fluid and hybrid mists are the mixture of MQL and coolant mists. The regular MQL operation provided longer tool life than that of dry machining. In addition, compared with MQL machining, the hybrid mist operations could further extend tool life and, in particular, the single coolant mist operations demonstrated the possibility of making the tool life longer than that of ordinary wet machining with flood cutting fluid supply.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Apoorva Shastri ◽  
Aniket Nargundkar ◽  
Anand J. Kulkarni ◽  
Luigi Benedicenti

AbstractThe advancement of materials science during the last few decades has led to the development of many hard-to-machine materials, such as titanium, stainless steel, high-strength temperature-resistant alloys, ceramics, refractories, fibre-reinforced composites, and superalloys. Titanium is a prominent material and widely used for several industrial applications. However, it has poor machinability and hence efficient machining is critical. Machining of titanium alloy (Grade II) in minimum quantity lubrication (MQL) environment is one of the recent approaches towards sustainable manufacturing. This problem has been solved using various approaches such as experimental investigation, desirability, and with optimization algorithms. In the group of socio-inspired optimization algorithm, an artificial intelligence (AI)-based methodology referred to as Cohort Intelligence (CI) has been developed. In this paper, CI algorithm and Multi-CI algorithm have been applied for optimizing process parameters associated with turning of titanium alloy (Grade II) in MQL environment. The performance of these algorithms is exceedingly better as compared with particle swarm optimization algorithm, experimental and desirability approaches. The analysis regarding the convergence and run time of all the algorithms is also discussed. It is important to mention that for turning of titanium alloy in MQL environment, Multi-CI achieved 8% minimization of cutting force, 42% minimization of tool wear, 38% minimization of tool-chip contact length, and 15% minimization of surface roughness when compared with PSO. For desirability and experimental approaches, 12% and 8% minimization of cutting force, 42% and 47% minimization of tool wear, 53% and 40% minimization of tool-chip contact length, and 15% and 20% minimization of surface roughness were attained, respectively.


Author(s):  
Seyed Hasan Musavi ◽  
Behnam Davoodi ◽  
Seyed A Niknam

Unstable crude oil derivatives are among the main substances added to the mineral-based lubricants (MBL). However, the high purification and disposal costs of such lubricants and consequent environmental difficulties are the major drawbacks of cutting fluid consumption. The lower use of MBL or replacing them with less harmful ones, in principle, vegetable-based lubricants (VBL) are the prime importance of achieving less operating costs and pollution. Furthermore, the use of VBLs is much more recommended if machinability aspects, including tool life, surface, and edge quality, would also be improved. Therefore, in the present study, cutting parameters and lubricant types were used as the experimental variables in the MQL-turning of A286 superalloy. A286 is classified as a difficult-to-cut material with a wide range of applications in the energy and turbine industries. No experimental study was found on the machining of A286 under separate cooling and lubrication with two MQL systems simultaneously. The effects of cutting parameters on both average surface roughness Ra and tool wear morphology were evaluated. Experimental results denoted that the use of VBLs led to better surface topology. On the other hand, the tendency of the built-up layer (BUL) and built-up edge (BUE) phenomenon were intensified when MBL was used. On the word, better tool life is also expected when using VBL. This observation revealed that the use of VBL not only tends to improve productivity and environmental safety aspects but also machinability aspects; in principle, better surface topology and longer tool life are also expected.


2014 ◽  
Vol 800-801 ◽  
pp. 180-185 ◽  
Author(s):  
Teng Da Wang ◽  
Er Liang Liu ◽  
Zhen Li ◽  
Hong Yan Ju ◽  
Yong Chun Zheng

In titanium alloy machining, under different cooling lubrication conditions, the variation of tool wear and chip morphology have a certain effect on the surface roughness. Under different cooling lubrication conditions, in order to analyze the variation of tool wear, chip morphology and surface roughness, the surface roughness values are measured ​​and the variation in tool wear and chip morphology are observed, and then the interaction relationship between the tool wear and the chip morphology is analyzed. The results show that the tool wear and chip morphology influence on the surface roughness. Under different cooling lubrication, the rake face wear do not change significantly, but wet cooling and MQL play a protective role for the flank face wear.


2015 ◽  
Vol 656-657 ◽  
pp. 341-346 ◽  
Author(s):  
Toshiaki Wakabayashi ◽  
Junji Kuhara ◽  
Toshifumi Atsuta ◽  
Akira Tsukuda ◽  
Norio Sembongi ◽  
...  

Near-dry machining attracts increasing attentions for environmental and economical benefits, and MQL machining has been recognized as the most representative near-dry method. It is highly successful in machining of most ordinary steels, and synthetic biodegradable polyol esters play a significant role as an effective cutting fluid with a very small amount. Recent concern for environmentally friendly manufacturing further encourages the attempts at applying near-dry operations to machining of difficult-to-cut materials. Since titanium alloys are typical difficult-to-cut materials, this paper investigates the cutting performance of various near-dry methods in turning of a titanium alloy from the view point of elongating the tool life. Those near-dry methods include regular MQL and hybrid mist supply operations, where the hybrid mist is a mixture of MQL mist and coolant mist which is atomized water-soluble cutting fluid. The regular MQL operation provided considerably long tool life compared with that of dry machining and the hybrid mist operation showed the possibility of making the tool life longer. The cutting performance was largely influenced by the type of MQL lubricants. In particular, a synthetic polyol ester lubricant having low viscosity indicated the successful cutting performance when it was combined with the coolant mist supply in the hybrid mist application.


2021 ◽  
Vol 153 ◽  
pp. 106597 ◽  
Author(s):  
Chetan Agrawal ◽  
Jwalant Wadhwa ◽  
Anjali Pitroda ◽  
Catalin Iulian Pruncu ◽  
Murat Sarikaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document