scholarly journals Predictive calculation of structural, nonlinear optical, electronic and thermodynamic properties of andirobin molecule from ab initio and DFT methods

2021 ◽  
Vol 3 (9) ◽  
Author(s):  
M. T. Ottou Abe ◽  
C. L. Nzia ◽  
L. Sidjui Sidjui ◽  
R. A. Yossa Kamsi ◽  
C. D. D. Mveme ◽  
...  

AbstractThe structural, nonlinear optical, electronic and thermodynamic properties of andirobin molecule were carried out by density functional theory at the B3LYP, WB97XD level and at the Restricted Hartree–Fock level by employing 6–311G(d,p) basis set. The obtained values of bond lengths, bond angles, 1H NMR and 13C NMR are in good agreement with experimental values. The dipole moment and first static hyperpolarizability show that andirobin can be applied in nonlinear optical devices. HOMO–LUMO energy gap values were found to be greater than 4 eV and lead us to the conclusion that this molecule can be used as insulator in many electronic devices. The thermal energy (E), molar heat capacity at constant volume $$(C_{v}$$ ( C v ) and entropy (S) were also calculated.

2014 ◽  
Vol 92 (9) ◽  
pp. 876-887 ◽  
Author(s):  
Seda Sagdinc ◽  
Yesim Kara ◽  
Filiz Kayadibi

Ab initio Hartree–Fock (HF) and Density Functional Theory (DFT) B3LYP methods with the 6-311G(d,p) basis set were applied to the three 11-thiocyanatoundecanoic acid phenylamide derivatives as corrosion inhibitors. Inhibition efficiency obtained experimentally followed the following order: N-(4-methoxyphenyl)-11-thiocyanatoundecanamide (N3MPTUA) > N-phenyl-11-thiocyanatoundecanamide (NPTUA) > N-(3-nitrophenyl)-11-thiocyanatoundecanamide (N3NPTUA). The molecular parameters most relevant to their potential action as corrosion inhibitors have been calculated in the neutral and protonated forms: EHOMO, ELUMO, energy gap (ΔE), dipole moment (μD), electronegativity (χ), global hardness (η), and the fraction of electrons transferred from the inhibitor molecule to the metallic atom (ΔN). The results of most of the global reactivity descriptors show that the experimental and theoretical studies agree well, and confirm that N3MPTUA is a better inhibitor than NPTUA or N3NPTUA. In addition, the local reactivity, analyzed through Fukui functions, show that the oxygen and nitrogen atoms will be the main adsorption sites.


2010 ◽  
Vol 24 (32) ◽  
pp. 6277-6290 ◽  
Author(s):  
SULEYMAN CABUK

We investigate the energy band structure, total density of states, the linear, nonlinear optical (NLO) response, and the electron energy-loss spectrum for Li(Nb, Ta)O 3 using first principles calculations based on density functional theory in its local density approximation. Our calculation shows that these compounds have similar structures. The indirect band gaps of 3.39 eV (LiNbO3) and 3.84 eV (LiTaO3) at the Γ–Z direction in the Brillouin zone are found. A simple scissor approximation is applied to adjust the band energy gap from the calculations to match the experimental values. The optical spectra are analyzed and the origins of some of the peaks in the spectra are discussed in terms of calculated electronic structure. Calculations are reported for the frequency-dependent complex second-order NLO susceptibilities [Formula: see text] up to 10 eV and for zero-frequency limit [Formula: see text]. The results are compared with the theoretical calculations and the available experimental data.


Author(s):  
Ainizatul Husna Anizaim ◽  
Muhamad Fikri Zaini ◽  
Muhammad Adlan Laruna ◽  
Ibrahim Abdul Razak ◽  
Suhana Arshad

In the title compound, C18H12O3S2, synthesized by the Claisen–Schmidt condensation method, the essentially planar chalcone unit adopts an s-cis configuration with respect to the carbonyl group within the ethylenic bridge. In the crystal, weak C—H...π interactions connect the molecules into zigzag chains along the b-axis direction. The molecular structure was optimized geometrically using Density Functional Theory (DFT) calculations at the B3LYP/6–311 G++(d,p) basis set level and compared with the experimental values. Molecular orbital calculations providing electron-density plots of HOMO and LUMO molecular orbitals and molecular electrostatic potentials (MEP) were also computed both with the DFT/B3LYP/6–311 G++(d,p) basis set. The experimental energy gap is 3.18 eV, whereas the theoretical HOMO–LUMO energy gap value is 2.73 eV. Hirshfeld surface analysis was used to further investigate the weak interactions present.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 749
Author(s):  
N. Günay ◽  
Ö. Tamer ◽  
D. Avcı ◽  
E. Tarcan ◽  
Y. Atalay

In this present methodical study, on the basis of the density functional theory (DFT), the first-principles calculations have been employed successfully to study the structural and electronic properties of N-acetyl-DL-methionine (C7H13NO3S) which is a derivative of DL-methionine which is also known DL-2-amino-4-methyl-thiobutanoic acid. Optimized molecular structure, vibrational frequencies and also 13C and 1H NMR chemical shift values of the title compound are provided in a detailed manner by using B3LYP and HSEH1PBE functionals by applying 6-311++G(d,p) basis set for calculations using Gaussian 09W program. The comparison of the calculated values with the experimental values provides important information about the title compound. In addition, the electronic properties (UV-Vis calculations) of the title compound, such as HOMO-LUMO energy values and energy gap, absorption wavelengths, oscillator strengths were performed basing on the optimized structure in gas phase. Moreover, the molecular electrostatic potential surface, dipole moment, nonlinear optical properties, linear polarizabilities and first hyperpolarizabilities and chemical parameters have also been studied.


BIBECHANA ◽  
2017 ◽  
Vol 15 ◽  
pp. 131-139
Author(s):  
Bhawani Datt Joshi ◽  
Manoj Kumar Chaudhary

In this paper, natural bond orbital (NBO) analysis, nonlinear optical and the thermodynamic properties of 10-Acetyl-10H-phenothiazine 5-oxide have been analyzed by employing density functional theory level employing 6-311++G(d,p) basis set. NBO analysis reveals that the intra- intermolecular charge transfer occurs within the molecule leading to the stabilization. The predicted nonlinear optical properties (NLO) like; polarizability and first hyperpolarizabiliy support that the molecule could attract the interests for future investigation.BIBECHANA 15 (2018) 131-139


2018 ◽  
Vol 73 (11) ◽  
pp. 1037-1045 ◽  
Author(s):  
Aijaz Rasool Chaudhry ◽  
Shabbir Muhammad ◽  
Ahmad Irfan ◽  
Abdullah G. Al-Sehemi ◽  
Bakhtiar Ul Haq ◽  
...  

AbstractUsing density functional theory (DFT) methods, we shed light on the structural, optical, electronic, and nonlinear optical (NLO) properties of three derivatives of 9,12-diiodo-1,2-dicarba-closo-dodecaborane(12) (C2H10B10I2). The DFT and time-dependent DFT methods are considered very precise and practical to optimize the ground and excited state geometries, respectively. A vibrant intramolecular charge transfer from highest occupied molecular orbitals (HOMOs) to the lowest unoccupied molecular orbitals (LUMOs) was observed in all compounds. The geometrical parameters of the experimental crystal structure, i.e. bond lengths/angles, have been successfully reproduced. The HOMO and LUMO energies, as well as their energy gaps (Eg), were also calculated and compared with each other for all derivatives. The effect of attached groups on electronic, optical, and NLO properties along with detailed structure-property relationship was discussed. For NLO response, the CAM-B3LYP functional along with relatively larger basis set 6-31+G** (for hydrogen, carbon, boron, and oxygen atoms) and LANL2DZ (for iodine atoms) have been used to optimize the compounds at ground states. The calculation of second-order NLO polarizabilities (βtot) shows that compounds 2 and 3 possess the βtot amplitudes of 3029 and 4069 a.u., respectively, with CAM-B3LYP method that are reasonably larger than similar prototype molecules. Owing to their unique V-shapes, the nonlinear anisotropy values are found to be 0.63, 0.34, and 0.44 for compounds 1–3, respectively, which show the significant two-dimensional character of these compounds. Thus, the NLO amplitudes as well as the nonlinear anisotropies indicate that the above-entitled compounds are good contenders for optical and NLO applications.


2017 ◽  
Vol 35 (3) ◽  
pp. 560-575
Author(s):  
Mehmet Kara ◽  
Meryem Evecen ◽  
Telhat Özdogan

AbstractHartree-Fock and Density Functional Theory (B3LYP, B3PW91) calculations for the ground state of (3-Oxo-3Hbenzo[ f]chromen-1-yl) methyl N,N-dimethylcarbamodithioate have been presented and the calculated structural parameters and energetic properties have been compared with the available X-ray diffraction data. The vibrational frequencies have been calculated using optimized geometry of the molecule. The conformational properties of the molecule have been determined by computing molecular energy properties, in which torsional angle varied from -180° to +180° in steps of 10°. Moreover, natural bond orbital analysis and atomic charge analysis have been performed. Besides, HOMO and LUMO energies have been calculated and their pictures have been presented. Finally, molecular electrostatic potential and thermodynamic properties have been calculated. It is seen that the obtained theoretical results agree well with the available experimental values. In all the calculations, except for optimization and vibrational calculations, B3LYP level of theory with 6-311++G(d,p) basis set has been used.


2018 ◽  
Vol 127 (1A) ◽  
pp. 43
Author(s):  
Duong Tuan Quang

<p class="03Abstract">The density functional theory and time-dependent density functional theory methods were used for investigation of the excitation and emission properties of some fluorophores. The calculations were based on the optimized geometries of ground states and excited states at the B3LYP functional and LanL2DZ basis set. The results clarified the nature of the optical properties of the compounds and agreed well with the experimental data. The approximate values of excitation energies and emission energies of compounds were also identified. The calculated excitation energies were about 0.01 to 0.56 eV higher than experimental values. Meanwhile, the emission energies were from 0.34 to 0.89 eV higher than experimental values. These large errors occurred when there were great variations between the optimized geometries of ground state and excited states. They could be due to the presence of components of solvent in real solution that stabilized the excited states, leading to reduce the excitation and emission energies in the experiments.</p>


2008 ◽  
Vol 63 (10-11) ◽  
pp. 712-720 ◽  
Author(s):  
Davut Avcı ◽  
Adil Başoğlu ◽  
Yusuf Atalay

The molecular geometry, vibrational frequencies, infrared intensities, Raman scattering activities and several thermodynamic parameters of anilinium nitrate in the ground state have been calculated by both Hartree-Fock (HF) and three density functional theory (DFT) methods (B3LYP, BLYP and B3PW91) using the 6-31G(d) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray structure. The optimized geometric bond lengths are described very well by the HF method while bond angles are reproduced more accurately by the DFT methods. Comparison between the observed fundamental vibrational frequencies of anilinium nitrate and the results of DFT and HF methods indicates that B3LYP is superior to the scaled HF, BLYP and B3PW91 approaches for molecular vibrational problems. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed. In addition, calculated results are related to the linear correlation plot of computed data versus experimental geometric parameters and IR data.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2760
Author(s):  
Bakhat Ali ◽  
Muhammad Khalid ◽  
Sumreen Asim ◽  
Muhammad Usman Khan ◽  
Zahid Iqbal ◽  
...  

Organic materials development, especially in terms of nonlinear optical (NLO) performance, has become progressively more significant owing to their rising and promising applications in potential photonic devices. Organic moieties such as carbazole and quinoline play a vital role in charge transfer applications in optoelectronics. This study reports and characterizes the donor–acceptor–donor–π–acceptor (D–A–D–π–A) configured novel designed compounds, namely, Q3D1–Q3D3, Q4D1–Q1D2, and Q5D1. We further analyze the structure–property relationship between the quinoline–carbazole compounds for which density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed at the B3LYP/6-311G(d,p) level to obtain the optimized geometries, natural bonding orbital (NBO), NLO analysis, electronic properties, and absorption spectra of all mentioned compounds. The computed values of λmax, 364, 360, and 361 nm for Q3, Q4, and Q5 show good agreement of their experimental values: 349, 347, and 323 nm, respectively. The designed compounds (Q3D1–Q5D1) exhibited a smaller energy gap with a maximum redshift than the reference molecules (Q3–Q5), which govern their promising NLO behavior. The NBO evaluation revealed that the extended hyperconjugation stabilizes these systems and caused a promising NLO response. The dipole polarizabilities and hyperpolarizability (β) values of Q3D1–Q3D3, Q4D1-Q1D2, and Q5D1 exceed those of the reference Q3, Q4, and Q5 molecules. These data suggest that the NLO active compounds, Q3D1–Q3D3, Q4D1–Q1D2, and Q5D1, may find their place in future hi-tech optical devices.


Sign in / Sign up

Export Citation Format

Share Document