scholarly journals Diagnosis of Chlamydia trachomatis genital infections in the era of genomic medicine

Author(s):  
Seema Shetty ◽  
Christina Kouskouti ◽  
Uwe Schoen ◽  
Nikolaos Evangelatos ◽  
Shashidhar Vishwanath ◽  
...  

Abstract Purpose Chlamydial genital infections constitute significant sexually transmitted infections worldwide. The often asymptomatic status of C. trachomatis (CT) infections leads to an increased burden on human reproductive health, especially in middle- and low-income settings. Early detection and management of these infections could play a decisive role in controlling this public health burden. The objective of this review is to provide an insight into the evolution of diagnostic methods for CT infections through the development of new molecular technologies, emphasizing on -omics’ technologies and their significance as diagnostic tools both for effective patient management and control of disease transmission. Methods Narrative review of the diagnostic methodologies of CT infections and the impact of the introduction of -omics’ technologies on their diagnosis by review of the literature. Results Various methodologies are discussed with respect to working principles, required specifications, advantages, and disadvantages. Implementing the most accurate methods in diagnosis is highlighted as the cornerstone in managing CT infections. Conclusion Diagnostics based on -omics’ technologies are considered to be the most pertinent modalities in CT testing when compared to other available methods. There is a need to modify these effective and accurate diagnostic tools in order to render them more available and feasible in all settings, especially aiming on turning them to rapid point-of-care tests for effective patient management and disease control.

2019 ◽  
Vol 4 (4) ◽  
pp. e001704 ◽  
Author(s):  
Saundria Moed ◽  
Muhammad H Zaman

Liver disease is a significant public health burden in both high-income and low-income countries, accounting for over 2 million annual, global deaths. Despite the significant mortality burden, liver diseases are historically a neglected problem due to a lack of accurate incidence and prevalence statistics, as well as national and international programmes targeting these diseases. A large portion of deaths due to liver diseases can be treated (eg, chronic hepatitis B), cured (eg, chronic hepatitis C) or prevented (eg, acute liver failure due to medications) if prompt diagnosis is made, but currently diagnostic methods fall short. Therefore, there is a critical need to fund the development of prompt, effective diagnostics for liver function, specifically in low-income and middle-income countries where the landscape for this testing is sparse. Here, we review and compare available and currently emerging diagnostic methods for liver injury in low-income and middle-income settings, while highlighting the opportunities and challenges that exist in the field.


2021 ◽  
Vol 4 ◽  
pp. 28
Author(s):  
Farisai Chidzwondo ◽  
Francisca Mutapi

Frequent disease outbreaks and acute infections occur in rural and low-income urban areas of Africa, with many health systems unprepared to diagnose and control diseases that are recurrent, endemic or have extended their geographic zone. In this review, we focus on acute infections that can be characterized by sudden onset, rapid progression, severe symptoms and poor prognosis. Consequently, these infections require early diagnosis and intervention. While effective vaccines have been developed against some of these diseases, lack of compliance and accessibility, and the need for repeated or multiple vaccinations mean large populations can remain vulnerable to infection. It follows that there is a need for enhancement of national surveillance and diagnostic capacity to avert morbidity and mortality from acute infections. We discuss the limitations of traditional diagnostic methods and explore the relative merits and applicability of protein-, carbohydrate- and nucleic acid-based rapid diagnostic tests that have been trialled for some infectious diseases. We also discuss the utility and limitations of antibody-based serological diagnostics and explore how systems biology approaches can better inform diagnosis. Lastly, given the complexity and high cost associated with after-service support of emerging technologies, we propose that, for resource-limited settings in Africa, multiplex point-of-care diagnostic tools be tailor-made to detect both recurrent acute infections and endemic infections.


2020 ◽  
Vol 18 (1) ◽  
pp. 42-45
Author(s):  
A. V. Mitronin ◽  
D. A. Ostanina ◽  
Yu. A. Mitronin

The review gives a contemporary notion about vital pulp minimally invasive diagnosis of temporary and permanent teeth. The latest information in Russian and foreign articles concerning new diagnostic methods that were proposed to increase diagnostic reliability is given in present review. The authors analysed advantages and disadvantages of diagnostic tools, studied their clinical effectiveness and made a conclusion about the possibility of predicting the status of pulses in the long term.


Author(s):  
Liaisan Uzianbaeva ◽  
Yan Yan ◽  
Tanaya Joshi ◽  
Nina Yin ◽  
Chaur-Dong Hsu ◽  
...  

Fetal, perinatal, and neonatal asphyxia are vital health issues for the most vulnerable groups in human beings, including fetuses, newborns, and infants. Severe reduction in oxygen and blood supply to the fetal brain can cause hypoxic-ischemic encephalopathy, leading to long-term neurological disorders, including mental impairment and cerebral palsy. Such neurological disorders are major healthcare concerns. Therefore, there has been a continuous effort to develop clinically useful diagnostic tools for accurately and quantitatively measuring and monitoring blood and oxygen supply to the fetal and neonatal brain to avoid severe consequences of asphyxia Hypoxic-Ischemic Encephalopathy (HIE) and Neonatal Encephalopathy (NE). Major diagnostic technologies used for this purpose include fetal heart rate monitoring (FHRM), fetus scalp blood sampling (FBS), ultrasound (US) imaging, magnetic resonance imaging (MRI), x-ray computed tomography (CT), and nuclear medicine. In addition, given the limitations and shortcomings of traditional diagnostic methods, emerging technologies such as near-infrared spectroscopy (NIRS) and photoacoustic (PA) imaging have also been introduced as stand-alone or complementary solutions to address this critical gap in fetal and neonatal care. This review provides a thorough overview of the traditional and emerging technologies for monitoring fetal and neonatal brain oxygenation status and describes their clinical utility, performance, advantages, and disadvantages.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 182 ◽  
Author(s):  
Robin Augustine ◽  
Anwarul Hasan ◽  
Suvarthi Das ◽  
Rashid Ahmed ◽  
Yasuyoshi Mori ◽  
...  

The rampant spread of COVID-19 and the worldwide prevalence of infected cases demand a rapid, simple, and cost-effective Point of Care Test (PoCT) for the accurate diagnosis of this pandemic. The most common molecular tests approved by regulatory bodies across the world for COVID-19 diagnosis are based on Polymerase Chain Reaction (PCR). While PCR-based tests are highly sensitive, specific, and remarkably reliable, they have many limitations ranging from the requirement of sophisticated laboratories, need of skilled personnel, use of complex protocol, long wait times for results, and an overall high cost per test. These limitations have inspired researchers to search for alternative diagnostic methods that are fast, economical, and executable in low-resource laboratory settings. The discovery of Loop-mediated isothermal Amplification (LAMP) has provided a reliable substitute platform for the accurate detection of low copy number nucleic acids in the diagnosis of several viral diseases, including epidemics like Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). At present, a cocktail of LAMP assay reagents along with reverse transcriptase enzyme (Reverse Transcription LAMP, RT-LAMP) can be a robust solution for the rapid and cost-effective diagnosis for COVID-19, particularly in developing, and low-income countries. In summary, the development of RT-LAMP based diagnostic tools in a paper/strip format or the integration of this method into a microfluidic platform such as a Lab-on-a-chip may revolutionize the concept of PoCT for COVID-19 diagnosis. This review discusses the principle, technology and past research underpinning the success for using this method for diagnosing MERS and SARS, in addition to ongoing research, and the prominent prospect of RT-LAMP in the context of COVID-19 diagnosis.


2020 ◽  
Vol 69 (4) ◽  
pp. 552-557
Author(s):  
Martin P. McHugh ◽  
Benjamin J. Parcell ◽  
Fiona M. MacKenzie ◽  
Kate E. Templeton ◽  

Introduction. Staphylococcus aureus bacteraemia (SAB) causes significant morbidity and mortality. Standard diagnostic methods require 24–48 h to provide results, during which time management is guideline-based and may be suboptimal. Aim. Evaluate the impact of rapid molecular detection of S. aureus in positive blood culture bottle fluid on patient management. Methodology. Samples were tested prospectively at two clinical centres. Positive blood cultures with Gram-positive cocci in clusters on microscopy were tested with the Xpert MRSA/SA blood culture assay (Cepheid), as well as standard culture-based identification and antimicrobial sensitivity tests. Results were passed to clinical microbiologists in real time and used for patient management. Results. Of 264 blood cultures tested (184 and 80 from each centre), S. aureus was grown from 39 (14.8 %) with one identified as methicillin-resistant S. aureus ; all Xpert results agreed with culture results. Median turnaround time from culture flagging positive to result reporting for Xpert was 1.7 h, compared to 25.7 h for species identification by culture. Xpert results allowed early changes to management in 40 (16.8 %) patients, with Xpert positive patients starting specific therapy for SAB and Xpert negative patients stopping or avoiding empiric antimicrobials for SAB. Conclusion. Rapid and accurate detection of S. aureus with the Xpert MRSA/SA BC assay in positive blood culture bottles allowed earlier targeted patient management. Negative Xpert results are suggestive of coagulase negative staphylococci, allowing de-escalation of antimicrobial therapy if clinically appropriate.


2021 ◽  
Vol 75 ◽  
pp. 297-303
Author(s):  
Marta Satora ◽  
Anna Rząsa ◽  
Krzysztof Rypuła ◽  
Katarzyna Płoneczka-Janeczko

The human microbiome in terms of the number of bacteria exceeds the number of cells in the human body. It is defined as an additional “forgotten organ” and plays a key role in maintaining a high health status, which is conditioned by the maintenance of certain proportions and natural relations between bacteria and cells of the host organism. New diagnostic methods can enable profiling not only the human microbiome, but also livestock. An innovative analytical method, which is next generation sequencing (NGS), is increasingly used in the study of the microbiome. Many bacteria are referred to as “uncultivated” or “non-culturable” and metagenomics has played an important role in detecting these bacteria and has contributed to the development of new media for their cultivation. The main application of NGS in microbiology is to replace the conventional characterization of pathogens based on the assessment of morphology, staining properties and metabolic traits with their genome related characteristics. There are several platforms, i.e. “diagnostic tools”, that use a variety of DNA sequencing technologies, among others Ion Torrent Personal Genome Machine (PGM), Pacific Biosciences (PacBio) and Illumina MiSeq. In the case of swine microbiome, studies of the microbiome with the use of modern sequencing technologies seem to be particularly interesting in the aspect of the upcoming, inevitable changes in preventive and therapeutic procedures in animals. Analyses of this type integrate with the concept of the shared human and animal health and enable an in-depth assessment of the impact of specific factors on the population of intestinal microbes and learning how to “form” the composition of the microbiome in order to improve the quality of husbandry and to maintain the pig’s proper health status.


2021 ◽  
Vol 15 (10) ◽  
pp. e0009803
Author(s):  
Berta Grau-Pujol ◽  
Helena Martí-Soler ◽  
Valdemiro Escola ◽  
Maria Demontis ◽  
Jose Carlos Jamine ◽  
...  

World Health Organization goals against soil-transmitted helminthiases (STH) are pointing towards seeking their elimination as a public health problem: reducing to less than 2% the proportion of moderate and heavy infections. Some regions are reaching WHO goals, but transmission could rebound if strategies are discontinued without an epidemiological evaluation. For that, sensitive diagnostic methods to detect low intensity infections and localization of ongoing transmission are crucial. In this work, we estimated and compared the STH infection as obtained by different diagnostic methods in a low intensity setting. We conducted a cross-sectional study enrolling 792 participants from a district in Mozambique. Two stool samples from two consecutive days were collected from each participant. Samples were analysed by Telemann, Kato-Katz and qPCR for STH detection. We evaluated diagnostic sensitivity using a composite reference standard. By geostatistical methods, we estimated neighbourhood prevalence of at least one STH infection for each diagnostic method. We used environmental, demographical and socioeconomical indicators to account for any existing spatial heterogeneity in infection. qPCR was the most sensitive technique compared to composite reference standard: 92% (CI: 83%– 97%) for A. lumbricoides, 95% (CI: 88%– 98%) for T. trichiura and 95% (CI: 91%– 97%) for hookworm. qPCR also estimated the highest neighbourhood prevalences for at least one STH infection in a low intensity setting. While 10% of the neighbourhoods showed a prevalence above 20% when estimating with single Kato-Katz from one stool and Telemann from one stool, 86% of the neighbourhoods had a prevalence above 20% when estimating with qPCR. In low intensity settings, STH estimated prevalence of infection may be underestimated if based on Kato-Katz. qPCR diagnosis outperformed the microscopy methods. Thus, implementation of qPCR based predictive maps at STH control and elimination programmes would disclose hidden transmission and facilitate targeted interventions for transmission interruption.


BJR|Open ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 20180044
Author(s):  
R. Phelps Kelley ◽  
Ronald J. Zagoria ◽  
Hao G. Nguyen ◽  
Katsuto Shinohara ◽  
Antonio C. Westphalen

Management of prostate cancer relies heavily on accurate risk stratification obtained through biopsies, which are conventionally performed under transrectal ultrasound (TRUS) guidance. Yet, multiparametric MRI has grown to become an integral part of the care of males with known or suspected prostate cancer. This article will discuss in detail the different MRI-targeted biopsy techniques, their advantages and disadvantages, and the impact they have on patient management.


2020 ◽  
Vol 74 ◽  
pp. 1-10
Author(s):  
Marta Satora ◽  
Anna Rząsa ◽  
Krzysztof Rypuła ◽  
Katarzyna Płoneczka-Janeczko

The human microbiome in terms of the number of bacteria exceeds the number of cells in the human body. It is defined as an additional "forgotten organ" and plays a key role in maintaining a high health status, which is conditioned by the maintenance of certain proportions and natural relations between bacteria and cells of the host organism. New diagnostic methods can enable profiling not only the human microbiome, but also livestock. An innovative analytical method, which is next generation sequencing (NGS), is increasingly used in the study of the microbiome. Many bacteria are referred to as "uncultivated" or "non-culturable" and metagenomics has played an important role in detecting these bacteria and has contributed to the development of new media for their cultivation. The main application of NGS in microbiology is to replace the conventional characterization of pathogens based on the assessment of morphology, staining properties and metabolic traits with their genome related characteristics. There are several platforms i.e. "diagnostic tools" that use a variety of DNA sequencing technologies, among others Ion Torrent Personal Genome Machine (PGM), Pacific Biosciences (PacBio) and Illumina MiSeq. In the case of swine microbiome, studies of the microbiome with the use of modern sequencing technologies seem to be particularly interesting in the aspect of the upcoming, inevitable changes in preventive and therapeutic procedures in animals. Analyses of this type enable an in-depth assessment of the impact of specific factors on the population of intestinal microbes and learning how to "form" the composition of the microbiome in order to improve the quality of husbandry and to maintain the proper pig’s health status, integrate with the concept of the shared human and animal health.


Sign in / Sign up

Export Citation Format

Share Document