scholarly journals Use of polymer modified binders as rejuvenators in recycled asphalt mixtures

2020 ◽  
Vol 13 (6) ◽  
pp. 654-664
Author(s):  
Hélder P. Torres ◽  
Sara R. M. Fernandes ◽  
Carlos D. A. Loureiro ◽  
Caroline F. N. Moura ◽  
Hugo M. R. D. Silva ◽  
...  

AbstractRoad paving recycling has been acquiring more relevance in society, especially within the paradigm of a circular economy. The addition of waste materials in asphalt mixtures is an excellent solution to face the gradual emergence of a great diversity of waste materials and reduce the production costs. This study aims to evaluate the addition of commercial and laboratory-produced polymer modified binders as rejuvenators in recycled asphalt mixtures with high contents of reclaimed asphalt pavement material (RAP). A commercial polymer modified binder (PMB) and a conventional bitumen modified with 5% of styrene-butadiene-styrene (SBS) or 4% of Regefalt were added to RAP aged bitumen and compared with a rejuvenated binder. Fatigue, permanent deformation and water sensitivity tests carried out on recycled mixtures produced with those binders showed that polymer modified binders could be used as rejuvenators to improve their performance significantly. The recycled asphalt mixture produced with the commercial PMB presented the best mechanical performance. The polymer-modified binders revealed an ageing resistance equivalent to that of the control rejuvenated binder, or slightly better in the case of the final binder with SBS polymer.

2020 ◽  
Vol 6 ◽  
pp. 42-60
Author(s):  
Abdalrhman Abrahim Milad ◽  
Ahmed Suliman B. Ali ◽  
Nur Izzi Md Yusoff

The possibility of using waste materials in road construction is of great interest as their utilisation may contribute to reducing the problems of hazard and pollution and conserve natural resources. Thus, there is an urgent need to find a sustainable method for using waste materials as a substitute in the standard asphalt binders. There are several concerns about the physical and chemical properties and mechanical performance of asphalt pavements incorporated with waste material in the effort to reduce permanent deformation of the road surface. This review article presents a brief discussion of the asphalt mixtures modified with waste material, and the recycled materials used as a modifier in the asphalt mixture. The present paper summarises the use of crumb rubber, crushed concrete, steel slag, glass fibre and plastic waste in asphalt mixtures. The use of waste materials as a modifier in asphalt mixture resulted in improved asphalt pavement performance. Results advocate that rubberised asphalt mixture with desired properties can be designed as an additive with a friendly environmental approach in construction materials. The researches that adopted the influence of usage, recycle waste material to improve the performance of the asphalt of the road are still limited compared to other construction fields. Doi: 10.28991/cej-2020-SP(EMCE)-05 Full Text: PDF


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3306 ◽  
Author(s):  
Marta Skaf ◽  
Emiliano Pasquini ◽  
Víctor Revilla-Cuesta ◽  
Vanesa Ortega-López

Electric arc furnace slag (EAFS) and ladle furnace slag (LFS) are by-products of the electric steelmaking sector with suitable properties for use in bituminous mixtures as both coarse and fine aggregates, respectively. In this research, the production of a porous asphalt mixture with an aggregate skeleton consisting exclusively of electric steelmaking slags (using neither natural aggregates nor fillers) is explored. The test program examines the asphalt mixtures in terms of their mechanical performance (abrasion loss and indirect tensile strength), durability (cold abrasion loss, aging, and long-term behavior), water sensitivity, skid and rutting resistance, and permeability. The results of the slag-mixes are compared with a standard mix, manufactured with siliceous aggregates and cement as filler. The porous mixes manufactured with the slags provided similar results to the conventional standard mixtures. Some issues were noted in relation to compaction difficulties and the higher void contents of the slag mixtures, which reduced their resistance to raveling. Other features linked to permeability and skid resistance were largely improved, suggesting that these mixtures are especially suitable for permeable pavements in rainy regions. In conclusion, a porous asphalt mixture was produced with 100% slag aggregates that met current standards for long-lasting and environmentally friendly mixtures.


2022 ◽  
Vol 12 (1) ◽  
pp. 490
Author(s):  
Caroline Moura ◽  
Lucas Nascimento ◽  
Carlos Loureiro ◽  
Mafalda Rodrigues ◽  
Joel Oliveira ◽  
...  

Steel slag is a byproduct generated as waste during the steelmaking process and can be considered a cost-effective and environmentally acceptable alternative to replace natural aggregates. Using steel slag aggregates (SSA) to produce asphalt mixtures promotes sustainability and circular economy principles by using an industrial byproduct as a raw material. Thus, this work mainly aims to design more sustainable asphalt mixtures with high amounts of SSA that fit the circular economy expectations. This work developed two asphalt mixtures with SSA for surface (AC 14 surf) and binder/base (AC 20 bin/base) courses. Initially, the excellent wearing and polishing resistance of SSA and their good affinity with bitumen demonstrated the potential of this byproduct to be used in asphalt mixtures. Then, when analyzing the influence of using two different SSA incorporation rates (50% and a percentage close to 100%) in both asphalt mixtures, it was concluded that the use of SSA should be limited to 75% to avoid excessive air void contents and durability problems. The importance of considering the different particle densities of SSA and natural aggregates was highlighted during the mix design by defining a relationship between an effective and equivalent binder content. Finally, the mechanical performance of AC 14 and AC 20 with 75% SSA incorporation was compared to identical conventional mixtures produced with natural granite aggregates. The results obtained showed that the asphalt mixtures with 75% SSA have some workability problems due to the rough and porous surface of SSA. However, they present an excellent water sensitivity and permanent deformation resistance, surpassing the performance of the conventional asphalt mixtures.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Hui Yao ◽  
Zhanping You

The objectives of this research are to use micro- and nanomaterials to modify the asphalt mixture and to evaluate the mechanical performance of asphalt mixtures. These micro- and nanomaterials, including carbon microfiber, Nanomer material, nanosilica, nonmodified nanoclay, and polymer modified nanoclay, were selected to blend with the control asphalt to improve the overall performance of the modified asphalt binders and mixtures. The microstructures of original materials and asphalt binders were observed by the field emission scanning electron microscope (FE-SEM). The mixture performance tests were employed to evaluate the resistance to rutting and permanent deformation of the modified asphalt mixtures. Test results indicate that(1)the dynamic modulus of micro- and nanomodified asphalt mixtures improved significantly;(2)the rutting susceptibility of the modified asphalt mixtures was reduced significantly compared to that of the control asphalt mixture;(3)the microstructures of modified asphalt binders were different from the control asphalt, and the structures determine the improvement in the performance of modified asphalt mixtures. These results indicate that the addition of micro- and nanomaterials enhanced the rutting performance and strength of asphalt mixtures. In addition, the analysis of variance (ANOVA) was used to analyze the modifying effects of micro- and nanomaterials on the performance.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-10
Author(s):  
Shatha S. Hasan ◽  
Rasha H. Abd Al-Ameer ◽  
Haider A. Hassani

The use of epoxy asphalt in road paving is one of the promising solutions for long-life road pavements in service with minimal maintenance. However, the high cost still stands as an obstacle to the widespread use of this high-performance material. The use of tire rubber waste (TRW) is one of the solutions in order to reduce costs, improve the environment, and improve the performance of epoxy asphalt mixtures, in addition to alleviating the brittle behaviour that epoxy asphalt tends to. This study proposes to add TRW in improving epoxy asphalt produced in local laboratories by using phenol Novolac resin as an epoxy curing agent of the epoxy base inside asphalt binder to produce and evaluate improved epoxy asphalt. The percentage of epoxy base used was 25% of the asphalt binder mixed with a 1:1 ratio of epoxy to Novolac using potassium hydroxide (KOH) as a catalyst. Whereas the proportions of added TRW were (1%, 2%, and 3%) of the total mixture weight by using the dry mixing method. The results showed, at its best values at 2% of TRW, that there was an increase in Marshall stability by 10%, and Marshall flow remained within specification limits with a decrease in the value of air voids at the highest bulk density, and a slight decrease in indirect tensile strength by 2%, with remaining excellent resistance to moisture sensitivity at 94%, and improvement in resistance to permanent deformation (rutting) by 14%. This indicates an improvement in the improved epoxy asphalt mixtures by the addition of TRW compared to the reference epoxy asphalt mixtures.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Katarina Mirković ◽  
Nikola Tošić ◽  
Goran Mladenović

In order to preserve natural resources, the use of waste and alternative materials in the construction and maintenance of roads is increasingly investigated. This paper presents the results of testing wearing course asphalt mixtures (AC 11s SURF 50/70) made with various percentages of fly ash, used as a partial or complete substitute for mineral filler. The properties of fly ash were determined to assess their suitability for use in asphalt mixtures. The experimental research was performed on asphalt samples containing fly ash from three different sources, with 25%, 50%, 75%, and 100% of mineral filler substitution. The control mixture was prepared with 100% of mineral filler. The paper presents the volumetric composition, stability, and flow of asphalt mixtures tested on standard Marshall’s samples, water sensitivity, and resistance to permanent deformation. The results of this study indicate that a satisfactory volumetric composition can be achieved by adding fly ash, while the bulk density and voids of the mineral and asphalt mixture generally depend on the type of fly ash and its content. The stability and flow of mixtures with fly ash are favourable compared with the control mixture. The water sensitivity of mixtures with fly ash is generally lower compared with the control mixture and depends on the type and percentage of fly ash. The resistance to permanent deformation of the asphalt mixtures depends on the fly ash type and percentage. The results obtained in this study are an important step towards broader implementation of fly ash in asphalt mixtures.


2020 ◽  
Vol 12 (23) ◽  
pp. 9962
Author(s):  
Pedro Lastra-González ◽  
Irune Indacoechea-Vega ◽  
Miguel A. Calzada-Pérez ◽  
Daniel Castro-Fresno

The potential recyclability of healable asphalt mixtures has been analyzed in this paper. A healable porous asphalt mixture with steel wool fibers was artificially aged in order to assess its recyclability. This mixture was used as reclaimed asphalt in a new porous asphalt mixture, whose mechanical and healing capacities were studied and compared with the behavior of the original porous asphalt mixture. The quantity of reclaimed asphalt mixture added was 40%; besides, in order to recover the properties of the aged binder, and incorporate the last advances in the recyclability of bituminous mixtures, a rejuvenator was also added (SYLVAROAD™ RP1000). The voids test, Cantabro particle loss test, water sensitivity test, stiffness test, and fatigue resistance test were performed to mechanically study the experimental mixture, while the last one (fatigue resistance test) was also used to assess its healing capacity. The results have shown that the healing capacity of the original healable porous asphalt mixture is maintained with similar mechanical performance.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6452
Author(s):  
Maria M. A. S. Maia ◽  
Marisa Dinis-Almeida ◽  
Fernando C. G. Martinho

Two of the main problems encountered in flexible pavements are the stripping of coarse aggregates and the formation of rut depth due to increases in the volume of road traffic and heavy vehicle loads, especially in areas where speeds are low. The existence of rut depth also affects the comfort and safety of road users due to the water accumulation on the pavement surface and reducing tire/pavement friction, which can lead to hydroplaning phenomena. In this research, it was proven that the use of fillers of different origins influences the affinity between aggregates and the binder. The effect of an adhesion promoter in the mix design (such as the amine included in cellulosic fiber pellets) was also studied. Several tests were carried out to determine the binder/aggregate adhesiveness, water sensitivity and resistance to permanent deformation, to evaluate the performance of different blends. It was found that the addition of this additive increased 10% of the aggregate surfaces covered with bitumen when compared with the aggregates without this addition. As expected, the water sensitivity tests showed that the mixture with granitic filler had the lowest indirect tensile strength ratio (ITSR) value (70%), while the mixtures with limestone filler led to the highest percentages (ranging from 83 to 93%). As for the results of the wheel tracking tests (WTT), it was confirmed that the use of limestone filler translates into an improvement in the performance against the permanent deformation of the asphalt mixtures. The mixture with higher bitumen content and adhesion promoter revealed the best average results.


2019 ◽  
Vol 9 (18) ◽  
pp. 3657 ◽  
Author(s):  
João Crucho ◽  
Luís Picado-Santos ◽  
José Neves ◽  
Silvino Capitão

This review addresses the effects of the modifications with nanomaterials, particularly nanosilica, nanoclays, and nanoiron, on the mechanical performance and aging resistance of asphalt mixtures. The desire for high-performance and long-lasting asphalt pavements significantly pushed the modification of the conventional paving asphalt binders. To cope with such demand, the use of nanomaterials for the asphalt binder modification seems promising, as with a small amount of modification an important enhancement of the asphalt mixture mechanical performance can be attained. Several studies already evaluated the effects of the modifications with nanomaterials, mostly focusing on the asphalt binder properties and rheology, and the positive findings encouraged the study of modified asphalt mixtures. This review focuses on the effects attained in the mechanical properties of the asphalt mixtures, under fresh and aged conditions. Generally, the effects of each nanomaterial were evaluated with the current state-of-art tests for the characterization of mechanical performance of asphalt mixtures, such as, permanent deformation, stiffness modulus, fatigue resistance, indirect tensile strength, and Marshall stability. Aging indicators, as the aging sensitivity, were used to evaluate the effects in the asphalt mixture’s aging resistance. Finally, to present a better insight into the economic feasibility of the analyzed nanomaterials, a simple cost analysis is performed.


Author(s):  
Ali Reza Azarhoosh ◽  
Gholam Hossein Hamedi ◽  
Hossein Fallahi Abandansari

Due to the complex behavior of asphalt pavement materials under various loading conditions, pavement structure, and environmental conditions, accurately predicting the permanent deformation of asphalt pavement is difficult. This study discusses the application of artificial neural network (ANN) and the multiple linear regression (MLR) in predicting permanent deformation of asphalt concrete mixtures modified by waste materials (waste plastic bottles and waste high-density polyethylene). The use of waste materials in the pavement industry can prevent the accumulation of waste material and environmental pollution and can reduce primary production costs. The results of a laboratory study evaluating the rutting properties of Hot-Mix Asphalt (HMA) mixtures using dynamic creep tests were investigated. The results indicate ANN techniques are more effective in predicting the rutting of the modified mixtures tested in this study than the traditional statistical-based prediction models. On the other hand, results show that an increase in percentage of waste materials is very effective in reducing the final strain of asphalt mixtures. However, an increase in percentage of additives over 7% does not help to reduce permanent deformation under dynamic loading in the asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document