Correlation Analysis for Determining Effective Data in Machine Learning: Detection of Heart Failure

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Tsehay Admassu Assegie ◽  
S. J. Sushma ◽  
B. G. Bhavya ◽  
S. Padmashree
2021 ◽  
Vol 17 (3) ◽  
pp. 499-518
Author(s):  
Elena Galli ◽  
Corentin Bourg ◽  
Wojciech Kosmala ◽  
Emmanuel Oger ◽  
Erwan Donal

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
E Galli ◽  
V Le Rolle ◽  
OA Smiseth ◽  
J Duchenne ◽  
JM Aalen ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Despite having all a systolic heart failure and broad QRS, patients proposed for cardiac resynchronization therapy (CRT) are highly heterogeneous and it remains extremely complicated to predict the impact of the device on left ventricular (LV) function and outcomes. Objectives We sought to evaluate the relative impact of clinical, electrocardiographic, and echocardiographic data on the left ventricular (LV) remodeling and prognosis of CRT-candidates by the application of machine learning (ML) approaches. Methods 193 patients with systolic heart failure undergoing CRT according to current recommendations were prospectively included in this multicentre study. We used a combination of the Boruta algorithm and random forest methods to identify features predicting both CRT volumetric response and prognosis (Figure 1). The model performance was tested by the area under the receiver operating curve (AUC). We also applied the K-medoid method to identify clusters of phenotypically-similar patients. Results From 28 clinical, electrocardiographic, and echocardiographic-derived variables, 16 features were predictive of CRT-response; 11 features were predictive of prognosis. Among the predictors of CRT-response, 7 variables (44%) pertained to right ventricular (RV) size or function. Tricuspid annular plane systolic excursion was the main feature associated with prognosis. The selected features were associated with a very good prediction of both CRT response (AUC 0.81, 95% CI: 0.74-0.87) and outcomes (AUC 0.84, 95% CI: 0.75-0.93) (Figure 1, Supervised Machine Learning Panel). An unsupervised ML approach allowed the identifications of two phenogroups of patients who differed significantly in clinical and parameters, biventricular size and RV function. The two phenogroups had significant different prognosis (HR 4.70, 95% CI: 2.1-10.0, p < 0.0001; log –rank p < 0.0001; Figure 1, Unsupervised Machine Learning Panel). Conclusions Machine learning can reliably identify clinical and echocardiographic features associated with CRT-response and prognosis. The evaluation of both RV-size and function parameters has pivotal importance for the risk stratification of CRT-candidates and should be systematically assessed in patients undergoing CRT. Abstract Figure 1


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Pratik Doshi ◽  
John Tanaka ◽  
Jedrek Wosik ◽  
Natalia M Gil ◽  
Martin Bertran ◽  
...  

Introduction: There is a need for innovative solutions to better screen and diagnose the 7 million patients with chronic heart failure. A key component of assessing these patients is monitoring fluid status by evaluating for the presence and height of jugular venous distension (JVD). We hypothesize that video analysis of a patient’s neck using machine learning algorithms and image recognition can identify the amount of JVD. We propose the use of high fidelity video recordings taken using a mobile device camera to determine the presence or absence of JVD, which we will use to develop a point of care testing tool for early detection of acute exacerbation of heart failure. Methods: In this feasibility study, patients in the Duke cardiac catheterization lab undergoing right heart catheterization were enrolled. RGB and infrared videos were captured of the patient’s neck to detect JVD and correlated with right atrial pressure on the heart catheterization. We designed an adaptive filter based on biological priors that enhances spatially consistent frequency anomalies and detects jugular vein distention, with implementation done on Python. Results: We captured and analyzed footage for six patients using our model. Four of these six patients shared a similar strong signal outliner within the frequency band of 95bpm – 200bpm when using a conservative threshold, indicating the presence of JVD. We did not use statistical analysis given the small nature of our cohort, but in those we detected a positive JVD signal the RA mean was 20.25 mmHg and PCWP mean was 24.3 mmHg. Conclusions: We have demonstrated the ability to evaluate for JVD via infrared video and found a relationship with RHC values. Our project is innovative because it uses video recognition and allows for novel patient interactions using a non-invasive screening technique for heart failure. This tool can become a non-invasive standard to both screen for and help manage heart failure patients.


Author(s):  
Kenichi Nakajima ◽  
Tomoaki Nakata ◽  
Takahiro Doi ◽  
Hayato Tada ◽  
Koji Maruyama

Sign in / Sign up

Export Citation Format

Share Document