Role of Neuroinflammation in the Establishment of the Neurogenic Microenvironment in Brain Diseases

2021 ◽  
Vol 2 (2) ◽  
pp. 17-28
Author(s):  
Jose Javier Miguel-Hidalgo ◽  
Yi Pang
Keyword(s):  
Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1256
Author(s):  
Ivan Y. Iourov ◽  
Yuri B. Yurov ◽  
Svetlana G. Vorsanova ◽  
Sergei I. Kutsev

Chromosome instability (CIN) has been repeatedly associated with aging and progeroid phenotypes. Moreover, brain-specific CIN seems to be an important element of pathogenic cascades leading to neurodegeneration in late adulthood. Alternatively, CIN and aneuploidy (chromosomal loss/gain) syndromes exhibit accelerated aging phenotypes. Molecularly, cellular senescence, which seems to be mediated by CIN and aneuploidy, is likely to contribute to brain aging in health and disease. However, there is no consensus about the occurrence of CIN in the aging brain. As a result, the role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate. Still, taking into account the effects of CIN on cellular homeostasis, the possibility of involvement in brain aging is highly likely. More importantly, the CIN contribution to neuronal cell death may be responsible for neurodegeneration and the aging-related deterioration of the brain. The loss of CIN-affected neurons probably underlies the contradiction between reports addressing ontogenetic changes of karyotypes within the aged brain. In future studies, the combination of single-cell visualization and whole-genome techniques with systems biology methods would certainly define the intrinsic role of CIN in the aging of the normal and diseased brain.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 334
Author(s):  
Huilong Luo ◽  
Xavier Declèves ◽  
Salvatore Cisternino

The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.


Author(s):  
Juntao Wang ◽  
Fang Xu ◽  
Xiaoming Zhu ◽  
Xianghua Li ◽  
Yankun Li ◽  
...  

The blood–brain barrier (BBB) is a highly specialized neurovascular unit that protects the brain from potentially harmful substances. In addition, the BBB also engages in the exchange of essential nutrients between the vasculature and brain parenchyma, which is critical for brain homeostasis. Brain diseases, including neurological disorders and cerebrovascular diseases, are often associated with disrupted BBB integrity, evidenced by increased permeability. Therefore, defining the mechanisms underlying the regulation of BBB integrity is crucial for the development of novel therapeutics targeting brain diseases. MicroRNAs (miRNA), a type of small non-coding RNAs, are emerging as an important regulator of BBB integrity. Here we review recent developments related to the role of miRNAs in regulating BBB integrity.


2021 ◽  
Author(s):  
Jared S. Katzeff ◽  
Woojin Scott Kim

Abstract ATP-binding cassette (ABC) transporters are one of the largest groups of transporter families in humans. ABC transporters mediate the translocation of a diverse range of substrates across cellular membranes, including amino acids, nucleosides, lipids, sugars and xenobiotics. Neurodegenerative diseases are a group of brain diseases that detrimentally affect neurons and other brain cells and are usually associated with deposits of pathogenic proteins in the brain. Major neurodegenerative diseases include Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. ABC transporters are highly expressed in the brain and have been implicated in a number of pathological processes underlying neurodegenerative diseases. This review outlines the current understanding of the role of ABC transporters in neurodegenerative diseases, focusing on some of the most important pathways, and also suggests future directions for research in this field.


2009 ◽  
Vol 22 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Alexander F. Kurz ◽  
Nicola T. Lautenschlager

ABSTRACTFrom antiquity the term “dementia” has denoted a state of severe acquired intellectual deterioration which significantly interferes with the fulfillment of personal, social or occupational roles, and makes the individual dependent on care and supervision by others. The medical concept of dementia refers to a pattern of cognitive and behavioral symptoms which typically arises from chronic and often progressive brain diseases. The quantitative expression of this pattern shows broad variability, and some patients fall within the boundaries of the concept whose intellectual and functional abilities are only mildly impaired. On the other hand, the concept currently has an unduly narrow qualitative bandwidth, because it is modeled after the subtype which occurs in Alzheimer's disease but does not represent a good fit for other important subtypes. In the authors’ view, the concept of dementia should be retained despite its limitations, since it has an important role in directing the physician's attention to a certain group of underlying pathologies. This diagnostic role of the concept will remain important in primary care even if biological indicators for one or several etiologies will become part of the diagnostic routine in research units in the future. The medical construct has further value since it entitles patients to medical treatment, social assistance and legal protection. Although in our opinion the concept of dementia does not need to be replaced, upcoming revisions of the psychiatric classification systems will have to reframe it by emphasizing the heterogeneity of the psychopathological symptom pattern. In view of the increasing importance of early diagnosis and treatment, however, the term “dementia”, which literally means “absence of mind”, is no longer an appropriate and timely designation for the broad range of cognitive and behavioral limitations covered by the concept. It should be renamed, using a terminology which accommodates scientific advance and meets the requirements of medical communication while preserving the benefits for patients and their families.


Author(s):  
Jyh-Woei Lin

Emulation of the operation process in the human brain was performed by Artificial Neural Network (ANN). The new comments of this study with the concept of progressive tense like an action to new Comparison ANN with Biological Neuron Network were stated against popular opinions. However, their opinions just pointed out the role of Synapse as the weights in the framework of ANN. In this paper, another concept was better suggested. The role of Synapse should be treated as the weights of ANN, which connect two neurons of two hidden different layers. There was a new proposed opinion in this study when an accurate ANN model was built with optimal weights. The role of Synapse should be both the converting the action potential into electrical energy and chemical energy and synaptic strengthening corresponding to long-term potentiation (LTP) in Biological Neuron Network. From the concept of pharmacology, the action of updating weights with optimal values after training more data, was similar as keeping a normal converting for LTP just using medicaments for resisting some ageing brain diseases e.g. Dementia. The new proposed opinion by comparing both Neural Networks should be reasonable in this study.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1284
Author(s):  
Sachchida Nand Rai ◽  
Payal Singh ◽  
Harry W.M. Steinbusch ◽  
Emanuel Vamanu ◽  
Ghulam Ashraf ◽  
...  

Acquiring the recommended daily allowance of vitamins is crucial for maintaining homeostatic balance in humans and other animals. A deficiency in or dysregulation of vitamins adversely affects the neuronal metabolism, which may lead to neurodegenerative diseases. In this article, we discuss how novel vitamin-based approaches aid in attenuating abnormal neuronal functioning in neurodegeneration-based brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, and Prion disease. Vitamins show their therapeutic activity in Parkinson’s disease by antioxidative and anti-inflammatory activity. In addition, different water- and lipid-soluble vitamins have also prevented amyloid beta and tau pathology. On the other hand, some results also show no correlation between vitamin action and the prevention of neurodegenerative diseases. Some vitamins also exhibit toxic activity too. This review discusses both the beneficial and null effects of vitamin supplementation for neurological disorders. The detailed mechanism of action of both water- and lipid-soluble vitamins is addressed in the manuscript. Hormesis is also an essential factor that is very helpful to determine the effective dose of vitamins. PubMed, Google Scholar, Web of Science, and Scopus were employed to conduct the literature search of original articles, review articles, and meta-analyses.


2021 ◽  
Vol 15 ◽  
Author(s):  
Gabriele Deidda ◽  
Manuele Biazzo

Brain physiological functions or pathological dysfunctions do surely depend on the activity of both neuronal and non-neuronal populations. Nevertheless, over the last decades, compelling and fast accumulating evidence showed that the brain is not alone. Indeed, the so-called “gut brain,” composed of the microbial populations living in the gut, forms a symbiotic superorganism weighing as the human brain and strongly communicating with the latter via the gut–brain axis. The gut brain does exert a control on brain (dys)functions and it will eventually become a promising valuable therapeutic target for a number of brain pathologies. In the present review, we will first describe the role of gut microbiota in normal brain physiology from neurodevelopment till adulthood, and thereafter we will discuss evidence from the literature showing how gut microbiota alterations are a signature in a number of brain pathologies ranging from neurodevelopmental to neurodegenerative disorders, and how pre/probiotic supplement interventions aimed to correct the altered dysbiosis in pathological conditions may represent a valuable future therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document