scholarly journals Chronic restraint stress induces changes in the cerebral Galpha 12/13 and Rho-GTPase signaling network

Author(s):  
Katarzyna Rafa-Zabłocka ◽  
Agnieszka Zelek-Molik ◽  
Beata Tepper ◽  
Piotr Chmielarz ◽  
Grzegorz Kreiner ◽  
...  

Abstract Background Evidence indicates that Gα12, Gα13, and its downstream effectors, RhoA and Rac1, regulate neuronal morphology affected by stress. This study was aimed at investigating whether repeated stress influences the expression of proteins related to the Gα12/13 intracellular signaling pathway in selected brain regions sensitive to the effects of stress. Furthermore, the therapeutic impact of β(1)adrenergic receptors (β1AR) blockade was assessed. Methods Restraint stress (RS) model in mice (2 h/14 days) was used to assess prolonged stress effects on the mRNA expression of Gα12, Gα13, RhoA, Rac1 in the prefrontal cortex (PFC), hippocampus (HIP) and amygdala (AMY). In a separate study, applying RS model in rats (3–4 h/1 day or 14 days), we evaluated stress effects on the expression of Gα12, Gα11, Gαq, RhoA, RhoB, RhoC, Rac1/2/3 in the HIP. Betaxolol (BET), a selective β1AR antagonist, was introduced (5 mg/kg/p.o./8–14 days) in the rat RS model to assess the role of β1AR in stress effects. RT-qPCR and Western Blot were used for mRNA and protein assessments, respectively. Results Chronic RS decreased mRNA expression of Gα12 and increased mRNA for Rac1 in the PFC of mice. In the mice AMY, decreased mRNA expression of Gα12, Gα13 and RhoA was observed. Fourteen days of RS exposure increased RhoA protein level in the rats’ HIP in the manner dependent on β1AR activity. Conclusions Together, these results suggest that repeated RS affects the expression of genes and proteins known to be engaged in neural plasticity, providing potential targets for further studies aimed at unraveling the molecular mechanisms of stress-related neuropsychiatric diseases.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew R. Baker ◽  
Ryan Y. Wong

AbstractLearning to anticipate potentially dangerous contexts is an adaptive behavioral response to coping with stressors. An animal’s stress coping style (e.g. proactive–reactive axis) is known to influence how it encodes salient events. However, the neural and molecular mechanisms underlying these stress coping style differences in learning are unknown. Further, while a number of neuroplasticity-related genes have been associated with alternative stress coping styles, it is unclear if these genes may bias the development of conditioned behavioral responses to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish to associate a naturally aversive olfactory cue with a given context. Next, we investigated if expression of two neural plasticity and neurotransmission-related genes (npas4a and gabbr1a) were associated with the contextual fear conditioning differences between proactive and reactive stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and showed significantly higher npas4a expression in the medial and lateral zones of the dorsal telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs). Our findings suggest that the expression of activity-dependent genes like npas4a may be differentially expressed across several interconnected forebrain regions in response to fearful stimuli and promote biases in fear learning among different stress coping styles.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Katharina Maria Hillerer ◽  
Volker Rudolf Jacobs ◽  
Thorsten Fischer ◽  
Ludwig Aigner

The time of pregnancy, birth, and lactation, is characterized by numerous specific alterations in several systems of the maternal body. Peripartum-associated changes in physiology and behavior, as well as their underlying molecular mechanisms, have been the focus of research since decades, but are still far from being entirely understood. Also, there is growing evidence that pregnancy and lactation are associated with a variety of alterations in neural plasticity, including adult neurogenesis, functional and structural synaptic plasticity, and dendritic remodeling in different brain regions. All of the mentioned changes are not only believed to be a prerequisite for the proper fetal and neonatal development, but moreover to be crucial for the physiological and mental health of the mother. The underlying mechanisms apparently need to be under tight control, since in cases of dysregulation, a certain percentage of women develop disorders like preeclampsia or postpartum mood and anxiety disorders during the course of pregnancy and lactation. This review describes common peripartum adaptations in physiology and behavior. Moreover, it concentrates on different forms of peripartum-associated plasticity including changes in neurogenesis and their possible underlying molecular mechanisms. Finally, consequences of malfunction in those systems are discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Anne Albrecht ◽  
Oliver Stork

The formation of fear memories is a powerful and highly evolutionary conserved mechanism that serves the behavioral adaptation to environmental threats. Accordingly, classical fear conditioning paradigms have been employed to investigate fundamental molecular processes of memory formation. Evidence suggests that a circadian regulation mechanism allows for a timestamping of such fear memories and controlling memory salience during both their acquisition and their modification after retrieval. These mechanisms include an expression of molecular clocks in neurons of the amygdala, hippocampus, and medial prefrontal cortex and their tight interaction with the intracellular signaling pathways that mediate neural plasticity and information storage. The cellular activities are coordinated across different brain regions and neural circuits through the release of glucocorticoids and neuromodulators such as acetylcholine, which integrate circadian and memory-related activation. Disturbance of this interplay by circadian phase shifts or traumatic experience appears to be an important factor in the development of stress-related psychopathology, considering these circadian components are of critical importance for optimizing therapeutic approaches to these disorders.


Endocrinology ◽  
2006 ◽  
Vol 147 (10) ◽  
pp. 4578-4588 ◽  
Author(s):  
Pauline M. Jamieson ◽  
Chien Li ◽  
Christina Kukura ◽  
Joan Vaughan ◽  
Wylie Vale

The endogenous corticotropin-releasing factor (CRF) type 2 receptor (CRFR2)-selective ligand urocortin 3 is expressed in discrete subcortical brain regions with fibers distributed mainly to hypothalamic and limbic structures. Close anatomical association between major urocortin 3 terminal fields and CRFR2 in hypothalamus, lateral septum, and medial amygdala (MEA) suggest it is well placed to modulate behavioral and hormonal responses to stress. Urocortin 3 was administered intracerebroventricularly to male rats under basal conditions or before a restraint stress, and circulating ACTH, corticosterone, glucose, and insulin were measured. Urocortin 3 activated the hypothalamic-pituitary-adrenal axis under basal conditions and augmented ACTH responses to restraint stress. Elevated blood glucose with lowered insulin to glucose ratios in both groups suggested increased sympathetic activity. Circulating catecholamines were also increased by urocortin 3, providing additional evidence for sympathoadrenomedullary stimulation. Intracerebroventricular urocortin 3 increased vasopressin mRNA expression in the parvocellular division of the hypothalamic paraventricular nucleus, whereas CRF expression was unchanged, providing a possible mechanism by which urocortin 3 mediates its actions. Urocortin 3 mRNA expression was examined after exposure to stress-related paradigms. Restraint increased levels in MEA with a trend to increased expression in the rostral perifornical hypothalamic area, whereas hemorrhage and food deprivation decreased expression in MEA. Adrenalectomy markedly increased expression in the rostral perifornical hypothalamic area, and high-level corticosterone replacement restored this to control levels. The evidence that urocortin 3 has the potential to influence hormonal components of the stress response and the changes in its expression levels after stressors is consistent with a potential function for the endogenous peptide in modulating stress responses.


2021 ◽  
Vol 22 (5) ◽  
pp. 2648
Author(s):  
Ning Wang ◽  
Yu-Han Zhang ◽  
Jin-Yan Wang ◽  
Fei Luo

Neuropathic pain is difficult to cure and is often accompanied by emotional and psychological changes. Exploring the mechanisms underlying neuropathic pain will help to identify a better treatment for this condition. The insular cortex is an important information integration center. Numerous imaging studies have documented increased activity of the insular cortex in the presence of neuropathic pain; however, the specific role of this region remains controversial. Early studies suggested that the insular lobe is mainly involved in the processing of the emotional motivation dimension of pain. However, increasing evidence suggests that the role of the insular cortex is more complex and may even be related to the neural plasticity, cognitive evaluation, and psychosocial aspects of neuropathic pain. These effects contribute not only to the development of neuropathic pain, but also to its comorbidity with neuropsychiatric diseases. In this review, we summarize the changes that occur in the insular cortex in the presence of neuropathic pain and analgesia, as well as the molecular mechanisms that may underlie these conditions. We also discuss potential sex-based differences in these processes. Further exploration of the involvement of the insular lobe will contribute to the development of new pharmacotherapy and psychotherapy treatments for neuropathic pain.


2021 ◽  
Author(s):  
Natalie M. D’Silva ◽  
Katie S. McCullar ◽  
Ashley Conard ◽  
Tyler Blackwater ◽  
Reza Azanchi ◽  
...  

AbstractAlcohol use disorder (AUD) is characterized by loss of control in limiting alcohol intake. This may involve intermittent periods of abstinence followed by alcohol seeking and, consequently, relapse. However, little is understood of the molecular mechanisms underlying the impact of alcohol deprivation on behavior. Using a new Drosophila melanogaster repeated intermittent alcohol exposure model, we sought to identify how ethanol deprivation alters spontaneous behavior, determine the associated neural structures, and reveal correlated changes in brain gene expression. We found that repeated intermittent ethanol exposures followed by ethanol-deprivation dynamically induces behaviors associated with a negative affect state. Although behavioral states broadly mapped to many brain regions, persistent changes in social behaviors mapped to the mushroom body and surrounding neuropil. This occurred concurrently with changes in expression of genes associated with sensory responses, neural plasticity, and immunity. Like social behaviors, immune response genes were upregulated following three-day repeated intermittent ethanol-exposures and persisted with one or two days of ethanol-deprivation, suggesting an enduring change in molecular function. Our study provides a framework for identifying how ethanol deprivation alters behavior with correlated underlying circuit and molecular changes.


2020 ◽  
Author(s):  
Matthew R Baker ◽  
Ryan Y Wong

AbstractLearning to anticipate potentially dangerous contexts is an adaptive behavioral response to coping with stressors. An animal’s stress coping style (e.g. proactive-reactive axis) is known to influence how it encodes salient events. However, the neural and molecular mechanisms underlying these stress coping style differences in learning are unknown. Further, while a number of neuroplasticity-related genes have been associated with alternative stress coping styles, it is unclear if these genes may bias the development of conditioned behavioral responses to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish to associate a naturally aversive olfactory cue with a given context. Next, we investigated if expression of two neural plasticity and neurotransmission-related genes (npas4a and gabbr1a) were associated with the contextual fear conditioning differences between proactive and reactive stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and showed significantly higher npas4a expression in the medial and lateral zones of the dorsal telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs). Our findings suggest that the magnitude of expression of activity-dependent genes like npas4a may be differentially expressed across several interconnected forebrain regions in response to fearful stimuli and promote biases in fear learning among different stress coping styles.


2013 ◽  
Vol 16 (2) ◽  
pp. 231-239
Author(s):  
A. Ziolkowska ◽  
J. Mlynarczuk ◽  
J. Kotwica

Abstract Cortisol stimulates the synthesis and secretion of oxytocin (OT) from bovine granulosa and luteal cells, but the molecular mechanisms of cortisol action remain unknown. In this study, granulosa cells or luteal cells from days 1-5 and 11-15 of the oestrous cycle were incubated for 4 or 8 h with cortisol (1x10-5, 1x10-7 M). After testing cell viability and hormone secretion (OT, progesterone, estradiol), we studied the effect of cortisol on mRNA expression for precursor of OT (NP-I/OT) and peptidyl glycine-α-amidating mono-oxygenase (PGA). The influence of RU 486 (1x10-5 M), a progesterone receptor blocker and inhibitor of the glucocorticosteroid receptor (GR), on the expression for both genes was tested. Cortisol increased the mRNA expression for NP-I/OT and PGA in granulosa cells and stimulated the expression for NP-I/OT mRNA in luteal cells obtained from days 1-5 and days 11-15 of the oestrous cycle. Expression for PGA mRNA was increased only in luteal cells from days 11-15 of the oestrous cycle. In addition, RU 486 blocked the cortisol-stimulated mRNA expression for NP-I/OT and PGA in both types of cells. These data suggest that cortisol affects OT synthesis and secretion in bovine ovarian cells, by acting on the expression of key genes, that may impair ovary function.


2019 ◽  
Vol 26 (39) ◽  
pp. 6976-6990 ◽  
Author(s):  
Ana María González-Paramás ◽  
Begoña Ayuda-Durán ◽  
Sofía Martínez ◽  
Susana González-Manzano ◽  
Celestino Santos-Buelga

: Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.


Author(s):  
Judy S. Reilly ◽  
Lara R. Polse

With respect to language, it has long been observed that children who experience early unilateral brain injury do not show the same irreparable damage as do adults with homologous late-onset strokes. Neural plasticity has been proposed as the explanation for such differential linguistic profiles; that is, the plasticity of the young, developing brain allows the possibility for extensive adaptation and organization following a neural insult. Recent research, however, suggests that there are limits to this ability to adapt and organize. Results from a another communicative system, affect, suggest that children with unilateral pre- or perinatal stroke show similar (albeit subtler) effects to adults with homologous late-onset injuries. This chapter presents findings on language development in children who sustained a pre- or perinatal unilateral stroke, and complements these studies with a discussion of affective expression in these same children. These prospective studies of children with perinatal stroke provide a unique window into the development of the neural substrates for language and affect. Specifically, they afford a context to investigate the degree to which particular brain regions may be privileged for specific behavioral functions, as well as how the developing brain adapts to organize alternative pathways in the wake of an early insult.


Sign in / Sign up

Export Citation Format

Share Document