scholarly journals Npas4a expression in the teleost forebrain is associated with stress coping style differences in fear learning

2020 ◽  
Author(s):  
Matthew R Baker ◽  
Ryan Y Wong

AbstractLearning to anticipate potentially dangerous contexts is an adaptive behavioral response to coping with stressors. An animal’s stress coping style (e.g. proactive-reactive axis) is known to influence how it encodes salient events. However, the neural and molecular mechanisms underlying these stress coping style differences in learning are unknown. Further, while a number of neuroplasticity-related genes have been associated with alternative stress coping styles, it is unclear if these genes may bias the development of conditioned behavioral responses to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish to associate a naturally aversive olfactory cue with a given context. Next, we investigated if expression of two neural plasticity and neurotransmission-related genes (npas4a and gabbr1a) were associated with the contextual fear conditioning differences between proactive and reactive stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and showed significantly higher npas4a expression in the medial and lateral zones of the dorsal telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs). Our findings suggest that the magnitude of expression of activity-dependent genes like npas4a may be differentially expressed across several interconnected forebrain regions in response to fearful stimuli and promote biases in fear learning among different stress coping styles.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew R. Baker ◽  
Ryan Y. Wong

AbstractLearning to anticipate potentially dangerous contexts is an adaptive behavioral response to coping with stressors. An animal’s stress coping style (e.g. proactive–reactive axis) is known to influence how it encodes salient events. However, the neural and molecular mechanisms underlying these stress coping style differences in learning are unknown. Further, while a number of neuroplasticity-related genes have been associated with alternative stress coping styles, it is unclear if these genes may bias the development of conditioned behavioral responses to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish to associate a naturally aversive olfactory cue with a given context. Next, we investigated if expression of two neural plasticity and neurotransmission-related genes (npas4a and gabbr1a) were associated with the contextual fear conditioning differences between proactive and reactive stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and showed significantly higher npas4a expression in the medial and lateral zones of the dorsal telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs). Our findings suggest that the expression of activity-dependent genes like npas4a may be differentially expressed across several interconnected forebrain regions in response to fearful stimuli and promote biases in fear learning among different stress coping styles.


2019 ◽  
Author(s):  
Matthew R Baker ◽  
Ryan Y Wong

AbstractAnimals frequently overcome stressors and the ability to learn and recall these salient experiences is essential to an individual’s survival. As part of an animal’s stress coping style, behavioral and physiological responses to stressors are often consistent across contexts and time. However, we are only beginning to understand how cognitive traits can be biased by different coping styles. Here we investigate learning and memory differences in zebrafish (Danio rerio) displaying proactive and reactive stress coping styles. We assessed learning rate and memory duration using an associative fear conditioning paradigm that trained zebrafish to associate a context with exposure to a natural olfactory alarm cue. Our results show that both proactive and reactive zebrafish learn and remember this fearful association. However, we note significant interaction effects between stress coping style and cognition. Zebrafish with the reactive stress coping style acquired the fear memory at a significantly faster rate than proactive fish. While both stress coping styles showed equal memory recall one day post-training, reactive zebrafish showed significantly stronger recall of the conditioned context relative to proactive fish four days post-training. Through understanding how stress coping strategies promote biases in processing salient information, we gain insight into mechanisms that can constrain adaptive behavioral responses.


2017 ◽  
Author(s):  
Cesar A.O. Coelho ◽  
Tatiana L. Ferreira ◽  
Juliana C.K. Soares ◽  
João R. Sato ◽  
Maria Gabriela M. Oliveira

ABSTRACTHippocampal damage results in profound retrograde, but no anterograde amnesia in contextual fear conditioning (CFC). Although the content learned in the latter have been discussed, the compensating regions were seldom proposed and never empirically addressed. Here, we employed network analysis of pCREB expression quantified from brain slices of rats with dorsal hippocampal lesion (dHPC) after undergoing CFC session. Using inter-regional correlations of pCREB-positive nuclei between brain regions, we modelled functional networks using different thresholds. The dHPC network showed small-world topology, equivalent to SHAM (control) network. However, diverging hubs were identified in each network. In a direct comparison, hubs in both networks showed consistently higher centrality values compared to the other network. Further, the distribution of correlation coefficients was different between the groups, with most significantly stronger correlation coefficients belonging to the SHAM network. These results suggest that dHPC network engaged in CFC learning is partially different, and engage alternative hubs. We next tested if pre-training lesions of dHPC and one of the new dHPC network hubs (perirhinal, Per; or disgranular retrosplenial, RSC, cortices) would impair CFC. Only dHPC-RSC, but not dHPC-Per, impaired CFC. Interestingly, only RSC showed a consistently higher centrality in the dHPC network, suggesting that the increased centrality reflects an increased functional dependence on RSC. Our results provide evidence that, without hippocampus, the RSC, an anatomically central region in the medial temporal lobe memory system might support CFC learning and memory.AUTHOR SUMMARYWhen determined cognitive performances are not affected by brain lesions of regions generally involved in that performance, the interpretation is that the remaining regions can compensate the damaged one. In contextual fear conditioning, a memory model largely used in laboratory rodents, hippocampal lesions produce amnesia for events occurred before, but not after the lesion, although the hippocampus is known to be important for new learning. Addressing compensation in animal models has always been challenging as it requires large-scale brain mapping. Here, we quantified 30 brain regions and used mathematical tools to model how a brain network can compensate hippocampal loss and learn contextual fear. We described that the damaged network preserved general interactivity characteristics, although different brain regions were identified as highly important for the network (e.g. highly connected). Further, we empirically validated our network model by performing double lesions of the hippocampus and the alternative hubs observed in the network models. We verified that double lesion of the hippocampus and retrosplenial cortex, one of the hubs, impaired contextual fear learning. We provide evidence that without hippocampus, the remaining network relies on alternative important regions from the memory system to coordinate contextual fear learning.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Kevin A. Corcoran ◽  
Gregory J. Quirk

ABSTRACTAnxiety disorders are commonly treated with exposure-based therapies that rely on extinction of conditioned fear. Persistent fear and anxiety following exposure therapy could reflect a deficit in the recall of extinction learning. Animal models of fear learning have elucidated a neural circuit for extinction learning and recall that includes the amygdala, ventromedial prefrontal cortex (vmPFC), and hippocampus. Whereas the amygdala is important for extinction learning, the vmPFC is a site of neural plasticity that allows for the inhibition of fear during extinction recall. We suggest that the vmPFC receives convergent information from other brain regions, such as contextual information from the hippocampus, to determine the circumstances under which extinction or fear will be recalled. Imaging studies of human fear conditioning and extinction lend credence to this extinction network. Understanding the neural circuitry underlying extinction recall will lead to more effective therapies for disorders of fear and anxiety.


2020 ◽  
Author(s):  
Christoph Fraenz ◽  
Dorothea Metzen ◽  
Christian J. Merz ◽  
Helene Selpien ◽  
Nikolai Axmacher ◽  
...  

AbstractResearch has shown that fear acquisition, in reaction to potentially harmful stimuli or situations, is characterized by pronounced interindividual differences. It is likely that such differences are evoked by variability in the macro- and microstructural properties of brain regions involved in the processing of threat or safety signals from the environment. Indeed, previous studies have shown that the strength of conditioned fear reactions is associated with the cortical thickness or volume of various brain regions. However, respective studies were exclusively targeted at single brain regions instead of whole brain networks. Here, we tested 60 young and healthy individuals in a differential fear conditioning paradigm while they underwent fMRI scanning. In addition, we acquired T1-weighted and multi-shell diffusion-weighted images prior to testing. We used task-based fMRI data to define global brain networks which exhibited increased BOLD responses towards CS+ or CS- presentations, respectively. From these networks, we obtained mean values of gray matter density, neurite density, and neurite orientation dispersion. We found that mean gray matter density averaged across the CS+ network was significantly correlated with the strength of conditioned fear reactions quantified via skin conductance response. Measures of neurite architecture were not associated with conditioned fear reaction in any of the two networks. Our results extend previous findings on the relationship between brain morphometry and fear learning. Most importantly, our study is the first to introduce neurite imaging to fear learning research and discusses how its implementation can be improved in future research.


2018 ◽  
Vol 5 (12) ◽  
pp. 181473 ◽  
Author(s):  
T. Champneys ◽  
G. Castaldo ◽  
S. Consuegra ◽  
C. Garcia de Leaniz

Farmed fish are typically reared at densities much higher than those observed in the wild, but to what extent crowding results in abnormal behaviours that can impact welfare and stress coping styles is subject to debate. Neophobia (i.e. fear of the ‘new’) is thought to be adaptive under natural conditions by limiting risks, but it is potentially maladapted in captivity, where there are no predators or novel foods. We reared juvenile Nile tilapia ( Oreochromis niloticus ) for six weeks at either high (50 g l −1 ) or low density (14 g l −1 ), assessed the extent of skin and eye darkening (two proxies of chronic stress), and exposed them to a novel object in an open test arena, with and without cover, to assess the effects of density on neophobia and stress coping styles. Fish reared at high density were darker, more neophobic, less aggressive, less mobile and less likely to take risks than those reared at low density, and these effects were exacerbated when no cover was available. Thus, the reactive coping style shown by fish at high density was very different from the proactive coping style shown by fish at low density. Our findings provide novel insights into the plasticity of fish behaviour and the effects of aquaculture intensification on one of the world's oldest farmed and most invasive fish, and highlight the importance of considering context. Crowding could have a positive effect on the welfare of tilapia by reducing aggressive behaviour, but it can also make fish chronically stressed and more fearful, which could make them less invasive.


2020 ◽  
Vol 9 (9) ◽  
pp. 2859
Author(s):  
M. Pilar Matud ◽  
Amelia Díaz ◽  
Juan Manuel Bethencourt ◽  
Ignacio Ibáñez

Emerging adulthood is a critical period of life that entails many life transitions in living arrangements, relationships, education and employment, which can generate stress and psychological distress in the emerging adult. The aim of the present study was to assess the relevance of stress, coping styles, self-esteem and perceived social support in the distress of emerging adult women and men. The sample consists of 4816 people (50% females) from the Spanish general population, ranging in age from 18 to 29 years old. All participants were assessed through questionnaires and scales that assess psychological distress, stress, coping styles, self-esteem and social support. Women scored higher than men in psychological distress, chronic stress, minor daily hassles, emotional coping style and social support, whereas men scored higher than women in rational and detachment coping styles and in self-esteem. Psychological distress was significantly predicted in women and men by high emotional coping style, lower self-esteem, high number of life events, and less social support. Another statistically significant predictor in men was less detachment coping style, whereas in women it was high chronic stress. The results of this research are relevant to healthcare professionals interested in improving the mental health of the emerging adult.


1998 ◽  
Vol 6 (3) ◽  
pp. 41-52 ◽  
Author(s):  
Carmen Sandi

Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Katharina Maria Hillerer ◽  
Volker Rudolf Jacobs ◽  
Thorsten Fischer ◽  
Ludwig Aigner

The time of pregnancy, birth, and lactation, is characterized by numerous specific alterations in several systems of the maternal body. Peripartum-associated changes in physiology and behavior, as well as their underlying molecular mechanisms, have been the focus of research since decades, but are still far from being entirely understood. Also, there is growing evidence that pregnancy and lactation are associated with a variety of alterations in neural plasticity, including adult neurogenesis, functional and structural synaptic plasticity, and dendritic remodeling in different brain regions. All of the mentioned changes are not only believed to be a prerequisite for the proper fetal and neonatal development, but moreover to be crucial for the physiological and mental health of the mother. The underlying mechanisms apparently need to be under tight control, since in cases of dysregulation, a certain percentage of women develop disorders like preeclampsia or postpartum mood and anxiety disorders during the course of pregnancy and lactation. This review describes common peripartum adaptations in physiology and behavior. Moreover, it concentrates on different forms of peripartum-associated plasticity including changes in neurogenesis and their possible underlying molecular mechanisms. Finally, consequences of malfunction in those systems are discussed.


Sign in / Sign up

Export Citation Format

Share Document