The time-dependent solubility of cyanogen bromide- and chymotrypsin-treated collagen gels in vitro

1970 ◽  
Vol 200 (2) ◽  
pp. 332-341 ◽  
Author(s):  
Adrian Shuttleworth ◽  
Melvin J. Glimcher
1993 ◽  
Vol 70 (06) ◽  
pp. 0998-1004 ◽  
Author(s):  
Páll T Önundarson ◽  
H Magnús Haraldsson ◽  
Lena Bergmann ◽  
Charles W Francis ◽  
Victor J Marder

SummaryThe relationship between lytic state variables and ex vivo clot lysability was investigated in blood drawn from patients during streptokinase administration for acute myocardial infarction. A lytic state was already evident after 5 min of treatment and after 20 min the plasminogen concentration had decreased to 24%, antiplasmin to 7% and fibrinogen 0.2 g/1. Lysis of radiolabeled retracted clots in the patient plasmas decreased from 37 ± 8% after 5 min to 21 ± 8% at 10 min and was significantly lower (8 ± 9%, p <0.005) in samples drawn at 20, 40 and 80 min. Clot lysability correlated positively with the plasminogen concentration (r = 0.78, p = 0.003), but not with plasmin activity. Suspension of radiolabeled clots in normal plasma pre-exposed to 250 U/ml two-chain urokinase for varying time to induce an in vitro lytic state was also associated with decreasing clot lysability in direct proportion with the duration of prior plasma exposure to urokinase. The decreased lysability correlated with the time-dependent reduction in plasminogen concentration (r = 0.88, p <0.0005). Thus, clot lysability decreases in conjunction with the development of the lytic state and the associated plasminogen depletion. The lytic state may therefore limit reperfusion during thrombolytic treatment.


1984 ◽  
Vol 51 (01) ◽  
pp. 061-064 ◽  
Author(s):  
M C Boffa ◽  
B Dreyer ◽  
C Pusineri

SummaryThe effect of negatively-charged polymers, used in some artificial devices, on plasma clotting and kinin systems was studied in vitro using polyelectrolyte complexes.Contact activation was observed as an immediate, transient and surface-dependent phenomenon. After incubation of the plasma with the polymer a small decrease of factor XII activity was noticed, which corresponded to a greater reduction of prekallikrein activity and to a marked kinin release. No significant decrease of factor XII, prekallikrein, HMW kininogen could be detected immunologically. Only the initial contact of the plasma with the polyelectrolyte lead to activation, subsequently the surface became inert.Beside contact activation, factor V activity also decreased in the plasma. The decrease was surface and time-dependent. It was independent of contact factor activation, and appeared to be related to the sulfonated groups of the polymer. If purified factor V was used instead of plasma factor V, inactivation was immediate and not time-dependent suggesting a direct adsorption on the surface. A second incubation of the plasma-contacted polymer with fresh plasma resulted in a further loss of Factor V activity.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4293
Author(s):  
Zhen-Wang Li ◽  
Chun-Yan Zhong ◽  
Xiao-Ran Wang ◽  
Shi-Nian Li ◽  
Chun-Yuan Pan ◽  
...  

Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23–46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.


2020 ◽  
Vol 15 (1) ◽  
pp. 619-628
Author(s):  
Chen Yuan ◽  
Ya Mo ◽  
Jie Yang ◽  
Mei Zhang ◽  
Xuejun Xie

AbstractAdvanced glycosylation end products (AGEs) are harmful factors that can damage the inner blood–retinal barrier (iBRB). Rat retinal microvascular endothelial cells (RMECs) were isolated and cultured, and identified by anti-CD31 and von Willebrand factor polyclonal antibodies. Similarly, rat retinal Müller glial cells (RMGCs) were identified by H&E staining and with antibodies of glial fibrillary acidic protein and glutamine synthetase. The transepithelial electrical resistance (TEER) value was measured with a Millicell electrical resistance system to observe the leakage of the barrier. Transwell cell plates for co-culturing RMECs with RMGCs were used to construct an iBRB model, which was then tested with the addition of AGEs at final concentrations of 50 and 100 mg/L for 24, 48, and 72 h. AGEs in the in vitro iBRB model constructed by RMEC and RMGC co-culture led to the imbalance of the vascular endothelial growth factor (VEGF) and pigment epithelial derivative factor (PEDF), and the permeability of the RMEC layer increased because the TEER decreased in a dose- and time-dependent manner. AGEs increased VEGF but lowered PEDF in a dose- and time-dependent manner. The intervention with AGEs led to the change of the transendothelial resistance of the RMEC layer likely caused by the increased ratio of VEGF/PEDF.


1992 ◽  
Vol 20 (2) ◽  
pp. 302-306
Author(s):  
Miroslav Červinka

Recent trends in the field of in vitro toxicology have centred around the validation of in vitro methods. The ultimate goal is to obtain pertinent data with the minimum of effort. In our laboratory, we have used toxicological methods based on the evaluation of cell morphology and cell proliferation. A method suitable for this purpose is time-lapse microcinematographic (or video) recording of cellular changes, which we used for many years. For practical in vitro toxicity testing, however, this method is far too complicated. Therefore, we have tried to develop a simple modification for the evaluation of cell morphology and cell proliferation, which would still allow for a basic time-dependent analysis. Comparison of detailed microcinematographic analysis with analysis according to our new proliferation assay is demonstrated with cisplatin as the toxicant. We believe that a time-dependent approach could improve the in vitro assessment of toxicity.


1992 ◽  
Vol 10 (3) ◽  
pp. 205-215 ◽  
Author(s):  
Scott L. Nyberg ◽  
Russell A. Shatford ◽  
William D. Payne ◽  
Wei-Shou Hu ◽  
Frank B. Cerra

2000 ◽  
Vol 44 (7) ◽  
pp. 1846-1849 ◽  
Author(s):  
I. Gustafsson ◽  
E. Hjelm ◽  
O. Cars

ABSTRACT The ketolides HMR 3004 and HMR 3647 (telithromycin) are a new class of macrolides that have a potential clinical efficacy against intracellular pathogens. The objectives of this study were to investigate the MIC, minimum bactericidal concentration, and time-dependent killing of two Chlamydia pneumoniaestrains of the two ketolides. The killing effect was also studied with a newly developed intracellular in vitro kinetic model. Furthermore, HMR 3647 was studied for the effect of a subinhibitory concentration of 0.5 times the MIC after a preexposure of 10 times the MIC during 12 h. The MICs for both strains were 0.0039 and 0.0156 mg/liter for HMR 3004 and HMR 3647, respectively. Killing with 10 times the MIC was time dependent, increasing from a 1-log-unit decrease in the number of inclusions per well at 48 h to a maximal effect of 2.8-log-unit decrease after 96 h. A preexposure of 10 times the MIC of HMR 3647 for 12 h followed by a subinhibitory concentration of 0.5 times the MIC increased the killing effect to a 1.2-log-unit reduction in inclusions per well. An exposure for 12 h gave poor reduction of inclusions, while a static dose of 10 times the MIC for 72 h showed a 2.2-log-unit reduction in inclusions per well. In the kinetic model, a small number of inclusions were detected after 72 h by one exposure of 10 times the MIC. Regrowth could not be detected after 120 h. The ketolides HMR 3004 and HMR 3647 have bactericidal activity and show a significant sub-MIC effect on the intracellular pathogenC. pneumoniae.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Medet Jumabay ◽  
Raushan Abdmaulen ◽  
Yucheng Yao ◽  
Kristina Bostrom

We previously showed that so-called de-differentiated fat (DFAT) cells, which are derived from mature white adipocytes, spontaneously differentiate into beating cardiomyocytes. Our aim in this study was to investigate if DFAT cells also differentiate into endothelial cells (ECs) in vitro, and to further examine the cellular origin of DFAT cells as well as adipose stromal cells (ASCs) using lineage tracing. First, we examined DFAT and ASCs prepared from aP2-Cre+/+;LacZ ROSA(R26R)+/+ double transgenic mice, which express LacZ under the aP2 promoter. The results revealed that 99.9% of DFAT cells and 45% of the ASCs stained positive for LacZ, supporting that the DFAT cells and part of the ASCs are of adipocytic origin. Second, we allowed newly isolated DFAT cells to spontaneously undergo EC differentiation, which was monitored by expression of EC lineage markers as determined by real-time PCR, immunofluorescence, and FACS. Expression of the EC markers CD31 and VE-cadherin increased progressively during 2 weeks in culture, the percentage of CD31(+) cells increased from 0.0% to 8.3%, and the cells formed multi-cellular tube structures when placed in Matrigel™/Collagen gels. The data supported that a fraction of the DFAT cells differentiate into ECs. Furthermore, the EC differentiation could be enhanced in DFAT cells by treatment with bone morphogenetic protein (BMP)-4 and BMP-9. In addition to EC differentiation, the DFAT cells also expressed markers of other cardiovascular lineages including smooth muscle cells and pericytes. The multipotency of DFAT cells suggests that cellular de-differentiation might be a way for differentiated cells to regain stem cell-like properties. Thus, white mature adipocytes maybe a new stem cell source for cardiovascular regeneration.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Martin Liu ◽  
Angelos Karagiannis ◽  
Matthew Sis ◽  
Srivatsan Kidambi ◽  
Yiannis Chatzizisis

Objectives: To develop and validate a 3D in-vitro model of atherosclerosis that enables direct interaction between various cell types and/or extracellular matrix. Methods and Results: Type I collagen (0.75 mg/mL) was mixed with human artery smooth muscle cells (SMCs; 6x10 5 cells/mL), medium, and water. Human coronary artery endothelial cells (HCAECs; 10 5 /cm 2 ) were plated on top of the collagen gels and activated with oxidized low density lipoprotein cholesterol (LDL-C). Monocytes (THP-1 cells; 10 5 /cm 2 ) were then added on top of the HCAECs. Immunofluorescence showed the expression of VE-cadherin by HCAECs (A, B) and α-smooth muscle actin by SMCs (A). Green-labelled LDL-C particles were accumulated in the subendothelial space, as well as in the cytoplasm of HCAECs and SMCs (C). Activated monocytes were attached to HCAECs and found in the subendothelial area (G-I). Both HCAECs and SMCs released IL-1β, IL-6, IL-8, PDGF-BB, TGF-ß1, and VEGF. Scanning and transmission electron microscopy showed the HCAECs monolayer forming gap junctions and the SMCs (D-F) and transmigrating monocytes within the collagen matrix (G-I). Conclusions: In this work, we presented a novel, easily reproducible and functional in-vitro experimental model of atherosclerosis that has the potential to enable in-vitro sophisticated molecular and drug development studies.


Sign in / Sign up

Export Citation Format

Share Document