New techniques for extreme conditions: high temperature reverse osmosis and nanofiltration

Desalination ◽  
1996 ◽  
Vol 105 (1-2) ◽  
pp. 57-61 ◽  
Author(s):  
Michael J.H. Snow ◽  
Dirk de Winter ◽  
Robert Buckingham ◽  
Jeff Campbell ◽  
J. Wagner
Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 588
Author(s):  
Eiji Kamio ◽  
Hiroki Kurisu ◽  
Tomoki Takahashi ◽  
Atsushi Matsuoka ◽  
Tomohisa Yoshioka ◽  
...  

Forward osmosis (FO) membrane process is expected to realize energy-saving seawater desalination. To this end, energy-saving water recovery from a draw solution (DS) and effective DS regeneration are essential. Recently, thermo-responsive DSs have been developed to realize energy-saving water recovery and DS regeneration. We previously reported that high-temperature reverse osmosis (RO) treatment was effective in recovering water from a thermo-responsive ionic liquid (IL)-based DS. In this study, to confirm the advantages of the high-temperature RO operation, thermo-sensitive IL-based DS was treated by an RO membrane at temperatures higher than the lower critical solution temperature (LCST) of the DS. Tetrabutylammonium 2,4,6-trimethylbenznenesulfonate ([N4444][TMBS]) with an LCST of 58 °C was used as the DS. The high-temperature RO treatment was conducted at 60 °C above the LCST using the [N4444][TMBS]-based DS-lean phase after phase separation. Because the [N4444][TMBS]-based DS has a significantly temperature-dependent osmotic pressure, the DS-lean phase can be concentrated to an osmotic pressure higher than that of seawater at room temperature (20 °C). In addition, water can be effectively recovered from the DS-lean phase until the DS concentration increased to 40 wt%, and the final DS concentration reached 70 wt%. From the results, the advantages of RO treatment of the thermo-responsive DS at temperatures higher than the LCST were confirmed.


2020 ◽  
Vol 318 ◽  
pp. 113984
Author(s):  
Yanmei Ma ◽  
Ruihong Li ◽  
Yingying Wang ◽  
Fangfei Li ◽  
Guangtao Liu ◽  
...  

2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Jan Hrbek ◽  
Bence Mészáros ◽  
Mykhaylo Paukov ◽  
Martin Kudláč

Abstract Measurement of physical properties of materials in extreme conditions, such as high temperature, is limited by technological challenges. Nevertheless, modeling of several phenomena relies on the existence of experimental data for their validation. In this study, a method suitable for determination of density in a liquid phase at high temperature is proposed and tested on Al2O3–ZrO2 system. A methodology for acquiring the temperature dependence of density for radioactive materials is proposed and is aimed to refine severe nuclear accidents modeling. The oxide was melted in an induction furnace with a cold crucible. The measurement was based on evaluation of the volume of the melt at different temperatures, in a range from 2100 to 2400 °C. The densities of the oxide in the solid-state and the skull-layer were measured using a pycnometer. A temperature dependence of the density was established and the results were compared with literature. The difference between existing data and the measured values in this work was less than 5%. Thus, the proposed methodology provides reliable density values in extreme conditions.


1992 ◽  
Vol 10 (2) ◽  
pp. 277-298 ◽  
Author(s):  
L. Drska ◽  
M. Sinor

The knowledge of the properties of atoms in high-temperature/density plasmas is of deep interest in many fields of physics. Theoretical studies and interpretation of the inertial confinement fusion experiments is one of the examples. On the basis of the density functional formalism, a model of matter at extreme conditions is presented. Application of the model is illustrated by examples of average ionization state and equation of state calculations.


2012 ◽  
Vol 27 (01) ◽  
pp. 1350004
Author(s):  
XIANFENG WEI ◽  
YONG HAN ◽  
LIU LIU ◽  
XINPING LONG

To explore the practicability of C 60 synthesis under extreme conditions (high pressure and high temperature), trinitrotoluene (TNT), trinitramine (RDX) and graphite mixtures of different proportions were detonated in a vacuum container, and the detonation products were collected for detecting. The results of mass spectroscopy, high performance liquid chromatography showed significant signals of C 60, which proved that C 60 could be synthesized by detonating the mixture of TNT and graphite (in 6:4 and 7:3 mass ratio, respectively), the detonation pressure and temperature were calculated around 13 GPa and 2000 K, respectively. Both experiment results and theoretical analysis showed the importance of detonation pressure and cooling temperature in detonation synthesis of C 60.


2016 ◽  
Vol 711 ◽  
pp. 157-162 ◽  
Author(s):  
David Citek ◽  
Milan Rydval ◽  
Stanislav Rehacek ◽  
Jiří Kolísko

The Ultra High Performance Concrete (UHPC) is a very promising material suitable for application in special structures. However, the knowledge of performance of this relatively new material is rather limited. The exceptional mechanical properties of UHPC allow for a modification of the design rules, which are applicable in ordinary or high strength concrete. This paper deals in more detail with impact of thermal stress on bond properties between prestressing strands and UHPC and an influence of high temperature to final material properties of different UHPC mixtures. Specimens in the first experimental part were subjected to the cycling freeze-thaw testing. The relationship between bond behavior of both type of material (UHPC and ordinary concrete) and effect of cycling freeze-thaw tests was investigated. The second part of experimental work was focused on mechanical properties of UHPC exposure to the high temperature (Tmax = 200°C to Tmax = 1000°C). Tested mechanical properties were compressive and flexural strengths, the fracture properties will be presented in the next paper. The obtained experimental data serve as a basis for further systematic experimental verification and more accurate information about the significantly higher material properties of UHP(FR)C and its behavior in extreme conditions.


Sign in / Sign up

Export Citation Format

Share Document