Effects of TGFβ1 on the proliferation and differentiation of an immortalized astrocyte cell line: Relationship with extracellular matrix

1992 ◽  
Vol 202 (2) ◽  
pp. 316-325 ◽  
Author(s):  
Daniele Toru-Delbauffe ◽  
Denise Baghdassarian ◽  
Dominique Both ◽  
Rozenn Bernard ◽  
Pierre Rouget ◽  
...  
1992 ◽  
Vol 76 (2) ◽  
pp. 215-215
Author(s):  
Toru-Delbauffe Danièle ◽  
Gagelin Claire ◽  
Both Dominique ◽  
Bernard Rozenn ◽  
Rouget Pierre ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Radosław Januchowski ◽  
Piotr Zawierucha ◽  
Marcin Ruciński ◽  
Michał Nowicki ◽  
Maciej Zabel

Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly—over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.


2004 ◽  
Vol 183 (3) ◽  
pp. 477-486 ◽  
Author(s):  
Chanika Phornphutkul ◽  
Ke-Ying Wu ◽  
Xu Yang ◽  
Qian Chen ◽  
Philip A Gruppuso

Insulin-like growth factor-I (IGF-I) is a critical regulator of skeletal growth. While IGF-I has been shown to be a potent chondrocyte mitogen in vitro, its role in chondrocyte differentiation is less well characterized. We chose to study the action of IGF-I on an accepted model of chondrocyte differentiation, the ATDC5 cell line. Insulin concentrations sufficiently high to interact with the IGF-I receptor are routinely used to induce ATDC5 cells to differentiate. Therefore, we first examined the ability of IGF-I to promote chondrocyte differentiation at physiological concentrations. IGF-I could induce differentiation of these cells at concentrations below 10 nM. However, increasing IGF-I concentrations were less potent at inducing differentiation. We hypothesized that mitogenic effects of IGF-I might inhibit its differentiating effects. Indeed, the extracellular-signal-regulated kinase (ERK)-pathway inhibitor PD98059 inhibited ATDC5 cell DNA synthesis while enhancing differentiation. This suggested that the ability of IGF-I to promote both proliferation and differentiation might require that its signaling be modulated through the differentiation process. We therefore compared IGF-I-mediated ERK activation in proliferating and hypertrophic chondrocytes. IGF-I potently induced ERK activation in proliferating cells, but minimal ERK response was seen in hypertrophic cells. In contrast, IGF-I-mediated Akt activation was unchanged by differentiation, indicating intact upstream IGF-I receptor signaling. Similar findings were observed in the RCJ3.1C5.18 chondrogenic cell line and in primary chick chondrocytes. We conclude that IGF-I promotes both proliferation and differentiation of chondrocytes and that the differentiation effects of IGF-I may require uncoupling of signaling to the ERK pathway.


2012 ◽  
Vol 11 (8) ◽  
pp. 4052-4064 ◽  
Author(s):  
S. Tamir Rashid ◽  
Jonathan D. Humphries ◽  
Adam Byron ◽  
Ameet Dhar ◽  
Janet A. Askari ◽  
...  

1992 ◽  
Vol 2 (10) ◽  
pp. S83 ◽  
Author(s):  
A Teti

Multicellular organisms are formed by specialized cells assembled in tissues. Individual cells contact and interact with other cells and with the extracellular matrix--a network of secreted proteins and carbohydrates that fills the intercellular spaces. The extracellular matrix helps cells to bind together and regulates a number of cellular functions, such as adhesion, migration, proliferation, and differentiation. It is formed by macromolecules, locally secreted by resident cells. The two main classes of macromolecules are polysaccharide glycosaminoglycans, usually covalently linked to proteins in the form of proteoglycans, and fibrous proteins of two functional types, structural (collagen, elastin) and adhesive (fibronectin, laminin, vitronectin, etc.). Receptors for extracellular matrix macromolecules are present in virtually all of the cells studied. They belong to the superfamily of integrins, alpha beta heterodimers, which, in most cases, recognize the Arg-Gly-Asp sequence of extracellular matrix proteins. On the exterior side of the cell, integrins link an extracellular matrix macromolecule, whereas in the cytosol, they bind the cytoskeleton, thereby forming a membrane bridge between extracellular and intracellular fibers. This structure enables the cell to adhere to the substratum. Similar to hormone- or growth factor-receptor binding, the interaction of the integrin with its specific ligand induces immediate signal transduction and influences cellular activities.


Sign in / Sign up

Export Citation Format

Share Document