scholarly journals Protein-synthesising activity of free and membrane-bound ribosomes in vitro and their differential sensitivity to protein synthesis inhibitors

FEBS Letters ◽  
1974 ◽  
Vol 46 (1-2) ◽  
pp. 326-332 ◽  
Author(s):  
Anna Koffer
Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P < 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P < 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P < 0.05) and its activity at 4 and 1 hpa, respectively (P < 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P < 0.05); however, its kinase activity decreased at 6 hpf (P < 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P < 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S622-S623
Author(s):  
Alisa W Serio ◽  
S Ken Tanaka ◽  
Kelly Wright ◽  
Lynne Garrity-Ryan

Abstract Background In animal models of Staphylococcus aureus infection, α-hemolysin has been shown to be a key virulence factor. Treatment of S. aureus with subinhibitory levels of protein synthesis inhibitors can decrease α-hemolysin expression. Omadacycline, a novel aminomethylcycline antibiotic in the tetracycline class of bacterial protein biosynthesis inhibitors, is approved in the United States for treatment of community-acquired bacterial pneumonia (CABP) and acute bacterial skin and skin structure infections (ABSSSI) in adults. This study was performed to determine the durability of inhibition and effect of subinhibitory concentrations of omadacycline on S. aureus hemolytic activity. Methods All experiments used the methicillin-sensitive S. aureus strain Wood 46 (ATCC 10832), a laboratory strain known to secrete high levels of α-hemolysin. Minimum inhibitory concentrations (MICs) of omadacycline and comparator antibiotics (tetracycline, cephalothin, clindamycin, vancomycin, linezolid) were determined. Growth of S. aureus with all antibiotics was determined and the percentage of hemolysis assayed. “Washout” experiments were performed with omadacycline only. Results S. aureus cultures treated with 1/2 or 1/4 the MIC of omadacycline for 4 hours showed hemolysis units/108 CFU of 47% and 59% of vehicle-treated cultures, respectively (Fig. 1A, 1B). In washout experiments, treatment with as little as 1/4 the MIC of omadacycline for 1 hour decreased the hemolysis units/108 CFU by 60% for 4 hours following removal of the drug (Table 1). Figure 1 Table 1 Conclusion Omadacycline inhibited S. aureus hemolytic activity in vitro at subinhibitory concentrations and inhibition was maintained for ≥ 4 hours after removal of extracellular drug (Fig. 2). The suppression of virulence factors throughout the approved omadacycline dosing interval, in addition to the in vitro potency of omadacycline, may contribute to the efficacy of omadacycline for ABSSSI and CABP due to virulent S. aureus. This finding may apply to other organisms and other virulence factors that require new protein synthesis to establish disease. Figure 2 Disclosures Alisa W. Serio, PhD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder) S. Ken Tanaka, PhD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder) Kelly Wright, PharmD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder) Lynne Garrity-Ryan, PhD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder)


1991 ◽  
Vol 261 (6) ◽  
pp. C1162-C1172 ◽  
Author(s):  
E. Page ◽  
J. Upshaw-Earley ◽  
G. E. Goings ◽  
D. A. Hanck

We have used a noncontracting in vitro preparation of stretched and unstretched rat atria to estimate contributions of constitutive and regulated pathways to the rates of stretch-augmented and basal secretion of immunoreactive atrial natriuretic peptide (ANP) and to examine effects of inhibition of the secretory sequence by 1) protein synthesis inhibitors, 2) disruption of forward vesicular traffic between endoplasmic reticulum and Golgi with brefeldin A (BFA, and 3) cellular ATP depletion. Protein synthesis inhibition with cycloheximide for 44 min slowed neither basal nor stretch-augmented ANP secretion but instead accelerated stretch-augmented secretion at low (but not at physiological) external Ca2+ concentration, suggesting that the constitutive component does not contribute substantially to either basal or stretch-augmented secretion. BFA, which disassembled Golgi cisternae, increased the stretch-augmented secretory rate via the regulated pathway and prevented Ca(2+)-dependent inactivation with time. Cellular ATP depletion rapidly and completely inhibited stretch-augmented secretion. We conclude that both basal and stretch-augmented utilize the energy-dependent regulated pathway, drawing on a large reservoir of concentrated prohormone stored in granules that is not detectably depleted during 44 min of stretch-augmented secretion at 37 degrees C.


1976 ◽  
Vol 22 (2) ◽  
pp. 304-308
Author(s):  
C. T. Chow

An active in vitro protein-synthesizing system has been developed from Rhodospirillum rubrum grown under either photosynthetic or heterotrophic conditions. A protease activity has been found in both of these systems, and this activity can be readily inactivated by treating the cells with KCl and phenylmethyl sulfonylfluoride. The difference in protein-synthesizing activity between the photosynthetic and the heterotrophic systems has been tested in regard to the requirement of various chemicals and the response to protein synthesis inhibitors or various chemical compounds. It has been concluded that only minor differences in protein-synthesizing activity exist between these two systems.


1986 ◽  
Vol 6 (1) ◽  
pp. 54-61
Author(s):  
E J Baker ◽  
L R Keller ◽  
J A Schloss ◽  
J L Rosenbaum

After flagellar detachment in Chlamydomonas reinhardi, there is a rapid synthesis and accumulation of mRNAs for tubulin and other flagellar proteins. Maximum levels of these mRNAs (flagellar RNAs) are reached within 1 h after deflagellation, after which they are rapidly degraded to their predeflagellation levels. The degradation of alpha- and beta-tubulin RNAs was shown to be due to the shortening of their half-lives after accumulation (Baker et al., J. Cell Biol. 99:2074-2081, 1984). Deflagellation in the presence of protein synthesis inhibitors results in the accumulation of tubulin and other flagellar mRNAs by kinetics similar to those of controls. However, unlike controls, in which the accumulated mRNAs are rapidly degraded, these mRNAs are stabilized in cycloheximide. The stabilization by cycloheximide is specific for the flagellar mRNAs accumulated after deflagellation, since there is no change in the levels of flagellar mRNAs in nondeflagellated (uninduced) cells in the presence of cycloheximide. The kinetics of flagellar mRNA synthesis after deflagellation are shown to be the same in cycloheximide-treated and control cells by in vivo labeling and in vitro nuclear runoff experiments. These results show that protein synthesis is not required for the induced synthesis of flagellar mRNAs, and that all necessary transcriptional control factors are present in the cell before deflagellation, but that protein synthesis is required for the accelerated degradation of the accumulated flagellar mRNAs. Since cycloheximide prevents the induced synthesis and accumulation of flagellar proteins, it is possible that the product(s) of protein synthesis required for the accelerated decay of these mRNAs is a flagellar protein(s). The possibility that one or more flagellar proteins autoregulate the stability of the flagellar mRNAs is discussed.


1977 ◽  
Vol 168 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J C Ramsey ◽  
W J Steele

Free loosely bound and tightly bound polyribosomes were separated from rat liver homogenate by salt extraction followed by differential centrifugation, and several of their structural and functional properties were compared to resolve the existence of loosely bound polyribosomes and verify the specificity of the separation. The free and loosely bound polyribosomes have similar sedimentation profiles and polyribosome contents, their subunit proteins have similar electrophoretic patterns and their products of protein synthesis in vitro show a close correspondence in size and amounts synthesized. In contrast, the tightly bound polyribosomes have different properties from those of the free and loosely bound polyribosomes; their average size is significantly smaller; their polyribosome content is higher; their 60 S-subunit proteins lack two components and contain four or more components not found elsewhere; their products of protein synthesis in vitro differ in size and amounts synthesized. These observations show that rat liver membranes entrap a large fraction of the free polyribosomes at low salt concentrations and that these polyribosomes are similar to those of the free-polyribosome fraction and are different from those of the tightly bound polyribosome fraction in size, structure and function.


Author(s):  
Dulama Richani ◽  
Robert B Gilchrist

Abstract Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.


1982 ◽  
Vol 60 (5) ◽  
pp. 580-585 ◽  
Author(s):  
Réal Lemieux ◽  
Claude Godin

Rabbit reticulocyte membrane-bound ribosomes liberated by deoxycholate treatment contain degraded forms of ribosomal and messenger RNA. This degradation occurs after the liberation of the ribosomes from the membranes by the detergent because intact ribosomal and messenger RNA can be extracted from washed membranes by phenol treatment. Increasing the ionic strength of the detergent buffer prevents this RNA degradation and allows the recovery of membrane-bound ribosomes capable of protein synthesis. Comparison of the proteins synthesized in vitro by the polyribosomes shows that the main protein produced by both free and membrane-bound ribosomes is globin. However, the two types of polyribosomes could be distinguished by the nonglobin proteins they produce.


1994 ◽  
Vol 5 (7) ◽  
pp. 819-828 ◽  
Author(s):  
Y Wang ◽  
G M Fuller

Recent evidence has shown that members of the Jak kinase family are activated after IL-6 binds to its receptor complex, leading to a tyrosine phosphorylation of gp130, the IL-6 signal-transducing subunit. The different members of the IL-6 cytokine subfamily induce distinct patterns of Jak-Tyk phosphorylation in different cell types. Using monospecific antibodies to gp130, Jak2 kinase, and phosphotyrosine, we investigated the kinetics of IL-6 stimulation of members of this pathway in primary hepatocytes. Our findings show that Jak 2 is maximally activated within 2 min of exposure to IL-6, followed by gp130 phosphorylation that reaches its peak in another 2 min then declines to basal level by 60 min. In vitro phosphorylation experiments show that activated Jak 2 is able to phosphorylate both native gp130 and a fusion peptide containing its cytoplasmic domain, demonstrating gp130 is a direct substrate of Jak 2 kinase. Experiments designed to explore the cell surface expression of gp130 show that > or = 2 h are required to get a second round of phosphorylation after the addition of more cytokines. This finding suggests that activated gp130 is internalized from the cell surface after IL-6 stimulation. Additional experiments using protein synthesis inhibitors reveal that new protein synthesis is required to get a second cycle of gp130 phosphorylation indicating gp130 must be synthesized de novo and inserted into the membrane. These findings provide strong evidence that down regulation of the IL-6 signal in hepatocytes involves the internalization and cytosol degradation of gp130.


Sign in / Sign up

Export Citation Format

Share Document