Comments on “parallel flow and counter flow condensation on an internally cooled vertical tube”

1982 ◽  
Vol 25 (10) ◽  
pp. 1617
Author(s):  
U.N. Murthy
1976 ◽  
Vol 98 (2) ◽  
pp. 297-302 ◽  
Author(s):  
K. G. T. Hollands ◽  
K. C. Goel

The general concept of the mean diameter of the disperse phase of an aerosol system, first introduced by Mugele and Evans in 1951, has proven to be a very useful one. In this concept, the proper mean diameter, xp,q, is characterized by a single pair of indices, p and q, which are dependent on the actual type of aerosol system under consideration. This paper re-examines the validity of this concept of mean diameter in heat and mass transfer aerosol systems. The concept is found to be applicable only under a very narrow range of conditions. Attention is then given to a more general definition of a mean diameter, applicable to aerosol heat or mass exchangers. Analyses of these devices shows that the more general mean diameter is a function of the capacity rate ratio, R, and effectiveness of the heat exchanger, ε. Solutions to the governing equations have permitted the mean diameter to be presented graphically as a function of these variables. These solutions are given for two types of particle size distributions, the Rosin-Rammler and the log-probability, and for both parallel-flow and counter-flow heat exchangers. The solutions are, however, restricted to cases where the resistance to heat or mass transfer lies exclusively in the continuous phase.


2021 ◽  
Vol 6 (1) ◽  
pp. 69-75
Author(s):  
Taiwo O. Oni ◽  
Ayotunde A. Ojo ◽  
Daniel C. Uguru-Okorie ◽  
David O. Akindele

A shell-and-tube heat exchanger which was subjected to different flow configurations, viz. counter flow, and parallel flow, was investigated. Each of the flow configurations was operated under two different conditions of the shell, that is, an uninsulated shell and a shell insulated with fiber glass. The hot water inlet temperature of the tube was reduced gradually from 60 oC to 40 oC, and performance evaluation of the heat exchanger was carried out. It was found that for the uninsulated shell, the heat transfer effectiveness for hot water inlet temperature of 60, 55, 50, 45, and 40 oC are 0.243, 0.244, 0.240, 0.240, and 0.247, respectively, for the parallel flow arrangement. For the counter flow arrangement, the heat transfer effectiveness for the uninsulated shell are 2.40, 2.74, 5.00, 4.17, and 2.70%, respectively, higher than those for the parallel flow. The heat exchanger’s heat transfer effectiveness with fiber-glass-insulated shell for the parallel flow condition with tube hot water inlet temperatures of 60, 55, 50, 45, and 40 oC are 0.223, 0.226, 0.220, 0.225, and 0.227, respectively, whereas the counter flow condition has its heat transfer effectiveness increased by 1.28, 1.47, 1.82, 1.11, and 1.18%, respectively, over those of the parallel flow.


Author(s):  
Gongnan Xie ◽  
Yanquan Liu ◽  
Bengt Sunden ◽  
Weihong Zhang ◽  
Jun Zhao

The problem involved in the increase of the chip output power of high-performance integrated electronic devices is the failure of reliability because of excessive thermal loads. This requires advanced cooling methods to manage the increase of the dissipated heat. The traditional air-cooling may not meet the requirements, and therefore a new generation of liquid cooling technology becomes necessary. Various microchannels are widely used to cool the electronic chips by a gas or liquid, but these microchannels are often designed to be single-layer channels. In this paper, the laminar heat transfer and pressure loss in a kind of double-layer microchannel have been investigated numerically. The layouts of parallel-flow and counter-flow for inlet/outlet flow directions are designed and then several sets of inlet flowrates are considered. The simulations show that such a double-layer microchannel can not only reduce the pressure drop effectively but also exhibits better thermal characteristics, and the parallel-flow layout is found to be better for heat dissipation when the pumping power is limited, while the counter-flow layout is better when a high pumping power is provided.


Author(s):  
K. Abbasi ◽  
M. Del Valle ◽  
A. P. Wemhoff ◽  
A. Ortega

The transient and steady-state response of single pass constant-flow (concentric parallel flow, concentric counter flow) heat exchangers was investigated using a finite volume method. Heat exchanger transients initiated by both step-change and sinusoidally varying hot stream inlet temperatures were investigated. The wall separating the fluid streams was modeled by conduction with thermal mass; hence the heat exchanger transient behavior is dependent on the thermal mass of the fluid streams as well as the internal wall. The outer wall is approximated as fully insulating. The time dependent temperature profiles were investigated as a function of heat exchanger dimensionless length and dimensionless time for both fluids. It was found that the transient response of the heat exchanger is controlled by a combination of the residence time and thermal capacitance of the fluid streams, the overall heat transfer coefficient between the fluid streams, and the thermal capacitance of the internal wall.


Author(s):  
Kohei Koyama ◽  
Yuya Nakamura ◽  
Hirofumi Arima

This study investigates FC-72 (Perfluorohexane) flow boiling in a plate heat exchanger. A plate heat exchanger which has a transparent cover plate is manufactured to visualize boiling two-phase flow pattern of the working fluid FC-72 heated by hot water. Titanium is used for heat transfer plate, which has micro pin-fin structure on the heat transfer surface to enhance heat transfer. Experiment is conducted for parallel- and counter-flow arrangements to compare thermal and hydraulic performances. Flow boiling is photographed by a digital camera and instantaneous images are processed to classify flow pattern and to measure void fraction in the heat exchanger. Flow rates and temperatures of FC-72 and hot water at inlet and outlet of the heat exchanger are simultaneously measured to obtain overall heat transfer coefficient. Two-phase flow pattern of FC-72 flow boiling and void fraction along flow direction as well as thermal performance are discussed. Experimental results show that bubbly flow, slug flow, and churn flow are observed for the experimental range of this study. Extent of churn flow in the parallel-flow heat exchanger is larger than that of the counter-flow one due to generated bubbles at upstream region in working fluid channel. Void fraction of the parallel-flow plate heat exchanger increases rapidly compared with that of the counter-flow one due to location of onset of nucleate boiling. Overall heat transfer coefficients for the parallel-flow arrangement is larger than that of the counter-flow due to destruction of thermal boundary layer. The experimental results show that flow arrangement of a plate heat exchanger has the potential to improve its thermal performance.


2003 ◽  
Vol 125 (2) ◽  
pp. 377-387 ◽  
Author(s):  
Gregory F. Nellis

Effectiveness-NTU equations are derived for counter and parallel-flow heat exchangers with fluids having high velocities. In this case, the change in the kinetic energy occurring within the heat exchanger will significantly affect the temperature profiles. The effectiveness is found to depend on the usual non-dimensional variables that compare the heat exchanger conductance to the hot- and cold-side capacity rates and on four additional nondimensional quantities that reflect the magnitude and distribution of the kinetic energy on the hot and cold-sides of the heat exchanger. The governing differential equations are derived, nondimensionalized, and solved analytically for the case of an exponentially distributed kinetic energy. Graphical solutions are presented and interpreted for several cases. The solutions are applied to a particular case involving high velocities within a counter-flow heat exchanger used to produce cryogenic temperatures.


Sign in / Sign up

Export Citation Format

Share Document