Surface hardness, compressive strength, and abrasion resistance of indirect die stones

1952 ◽  
Vol 2 (3) ◽  
pp. 381-389 ◽  
Author(s):  
F.A. Peyton ◽  
J.P. Leibold ◽  
G.V. Ridgley
2019 ◽  
Vol 9 (23) ◽  
pp. 5109 ◽  
Author(s):  
Miguel C. S. Nepomuceno ◽  
Luís F. A. Bernardo

Self-compacting concrete (SCC) shows to have some specificities when compared to normal vibrated concrete (NVC), namely higher cement paste dosage and smaller volume of coarse aggregates. In addition, the maximum size of coarse aggregates is also reduced in SCC to prevent blocking effect. Such specificities are likely to affect the results of non-destructive tests when compared to those obtained in NVC with similar compressive strength and materials. This study evaluates the applicability of some non-destructive tests to estimate the compressive strength of SCC. Selected tests included the ultrasonic pulse velocity test (PUNDIT), the surface hardness test (Schmidt rebound hammer type N), the pull-out test (Lok-test), and the concrete maturity test (COMA-meter). Seven sets of SCC specimens were produced in the laboratory from a single mixture and subjected to standard curing. The tests were applied at different ages, namely: 1, 2, 3, 7, 14, 28, and 94 days. The concrete compressive strength ranged from 45 MPa (at 24 h) to 97 MPa (at 94 days). Correlations were established between the non-destructive test results and the concrete compressive strength. A test variability analysis was performed and the 95% confidence limits for the obtained correlations were computed. The obtained results for SCC showed good correlations between the concrete compressive strength and the non-destructive tests results, although some differences exist when compared to the correlations obtained for NVC.


2017 ◽  
Vol 730 ◽  
pp. 395-400 ◽  
Author(s):  
Shi Bing Sun ◽  
Jun Jie Li ◽  
Lun Zhao

The current paper experimentally investigated the effect of different kinds re-dispersible polymer powers (RPP) on cement-based self-leveling mortars. The construction operation of mortar and its mechanical property was tested in accordance with the standard JC/T 981-2005. Besides, the micro-structure surface of self-leveling mortar was characterized by means of SEM to reflect the microscopic mechanism of the performance. The results showed the dispersible polymer powders could significantly improve performance of fluidity, adhesion property and abrasion resistance on cement-based self-leveling mortar; Meanwhile, there is no bad impact on its compressive strength and flexural strength. This study has guiding significance for the construction and application of cement based self-leveling mortar.


Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 83 ◽  
Author(s):  
Kamil Krzywiński ◽  
Łukasz Sadowski ◽  
Jacek Szymanowski ◽  
Andrzej Żak ◽  
Magdalena Piechówka-Mielnik

This article presents studies that were performed in order to improve the subsurface properties of horizontally-formed cementitious composites using tin(II) fluoride nanoparticles. The main aim of the study was to solve the problem of the decrease in subsurface properties caused by mortar bleeding and the segregation of the aggregate along the height of the overlay. The article also aims to highlight the patch grabbing difficulties that occur during the process of forming horizontally-formed cementitious composites. Four specimens were analyzed: one reference sample and three samples modified with the addition of 0.5, 1.0, and 1.5% of tin(II) fluoride nanoparticles in relation to the cement mass. To analyze the mechanical properties of the specimens, non-destructive (ultrasonic pulse velocity) and destructive tests (flexural tensile strength, compressive strength, abrasion resistance, pull-off strength) were performed. It was indicated that due to the addition of the tin(II) fluoride, it was possible to enhance the subsurface tensile strength and abrasion resistance of the tested cementitious composites. To confirm the obtained macroscopic results, the porosity of the subsurface was measured using SEM. It was also shown that the addition of the tin(II) fluoride nanoparticles did not reduce its flexural and compressive strength. The results show that horizontally-formed cementitious composites with the addition of 1.0% of tin(II) fluoride nanoparticles in relation to the cement mass obtained the most effective mechanical performance, especially with regard to subsurface properties.


Author(s):  
Solomon Debbarma ◽  
Surender Singh ◽  
G. D. Ransinchung R.N.

The present study evaluates the potential and suitability of different fractions of reclaimed asphalt pavement (RAP) for roller compacted concrete pavement (RCCP) mixes. Natural coarse and fine aggregates were replaced, partially and in combination, by coarse RAP, fine RAP, and combined RAP for preparation of RCCP mixes. The considered properties to determine the optimum RAP fraction and its proportion for RCCP were fresh density and water demand, compressive strength, flexural strength, split tensile strength, porosity, water absorption, abrasion resistance, and performance in aggressive environments of chloride- and sulfate-rich ions. It was observed that inclusions of all the fractions of RAP considered could reduce the strength related properties of RCCP mixes significantly at all curing ages. However, fine RAP mixes were found to exhibit better strength properties than coarse RAP and combined RAP mixes. It was also observed that none of the RAP mixes could achieve the recommended compressive strength criterion of 27.6 MPa, however, they exhibited enough flexural strength to replace a fraction of conventional aggregates, individually or in combination, for construction using RCCP. In fact, 50% coarse and 50% fine RAP mixes had higher flexural strength than the target laboratory mean strength of 4.3 MPa. Similarly, these mixes were found to have sufficient abrasion resistance and could be included in RCCP (surface course) to be constructed in areas having high concentrations of chloride and sulfate ions. Additionally, the results also indicated that higher proportions of fine RAP may be suggested for RCCP mixes to be laid in sulfatic environments.


2017 ◽  
Vol 07 (01) ◽  
pp. 82-99 ◽  
Author(s):  
Adekunle P. Adewuyi ◽  
Ismaila A. Sulaiman ◽  
Joseph O. Akinyele

2020 ◽  
Vol 38 (11A) ◽  
pp. 1706-1716
Author(s):  
Wasan I. Khalil ◽  
Qias J. Frayyeh ◽  
Mahmood F. Ahmed

The purpose of this work is to investigate the possibility to recycled and reused of waste clay brick and waste plastic as constituents in the production of green Geopolymer concrete paving bricks. Powder of clay brick waste (WBP) was used as a partial replacement of Metakaolin (MK) in Geopolymer binder. Moreover, recycled clay brick waste aggregate (BA) and plastic waste aggregate (PL) were incorporated as coarse aggregate in mixtures of Metakaolin based Geopolymer concrete (MK-GPC) pavement bricks. Six types of mixtures were prepared and cast as pavement bricks with dimensions of 150×150×100 mm. All samples have been tested for compressive strength, water absorption and abrasion resistance at age of 28 days; and compared the results with the requirements of Iraqi specification No.1606-2006. The MK-GPC pavement bricks present a compressive strength of 31-47MPa, water absorption of 3.66% to5.32% and abrasion resistance with groove length between 21.78mm to 18.91 mm. These types of pavement bricks are classified as a medium to light capacity for weight loading, and it is possible to be used in wide range of paving applications, especially in aggressive wearing environment.


2019 ◽  
Vol 22 (3-4) ◽  
pp. 139-148
Author(s):  
Lavie A. MANGO-ITULAMYA ◽  
Frédéric COLLIN ◽  
Pascal PILATE ◽  
Fabienne COURTEJOIE ◽  
Nathalie FAGEL

This study aims to characterize Belgian clays in order to evaluate their use for manufacture of compressed earth blocks (CEB). Nineteen Belgian clay deposits were sampled in 56 sites and 135 samples were collected and analyzed. The analyses focus on the determination of particle size, plasticity, nature and mineralogy as the main characteristics for assessing the suitability of the raw clays to make CEB. These analyses allow for classifying the sampled clay deposits in three categories: clays that can be used unchanged to make CEB (2 clay deposits), clays that are suitable for the manufacture of CEB but require addition of sand and gravel particles (13 clay deposits) and clays that are suitable for the manufacture of CEB if they are mixed with other raw clays (4 clay deposits). In order to verify the use of these clays, five of them served as a model for making CEB. The strength of these bricks was evaluated by testing for compressive strength and abrasion resistance. The results of these tests confirm the suitability or not of the sampled clays for the manufacture of CEB.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4583
Author(s):  
Martyna Nieświec ◽  
Łukasz Sadowski

Recently, the surfaces of concrete structures are impregnated to protect them against the environment in order to increase their durability. It is still not known how the use of these agents affects the near-surface hardness of concrete. This is especially important for experts who use the near-surface hardness of concrete for estimating its compressive strength. The impregnation agents are colorless and, thus, without knowledge of their use, mistakes can be made when testing the surface hardness of concrete. This paper presents the results of investigations concerning the impact of impregnation on the subsurface hardness concrete measured using a Schmidt hammer. For this research, samples of cement paste with a water–cement ratio of 0.4 and 0.5 were used. The samples were impregnated with one, two, and three layers of two different agents. The first agent has been made based on silanes and siloxanes and the second agent has been made based on based on polymers. The obtained research results allow for the conclusion that impregnation affects the near-surface hardness of concrete. This research highlights the fact that a lack of knowledge about the applied impregnation of concrete when testing its near-surface hardness, which is then translated into its compressive strength, can lead to serious mistakes.


Sign in / Sign up

Export Citation Format

Share Document