The room-temperature lattice spacings of some intra rare-earth binary systems

1966 ◽  
Vol 11 (6) ◽  
pp. 436-454 ◽  
Author(s):  
I.R. Harris ◽  
C.C. Koch ◽  
G.V. Raynor
1998 ◽  
Vol 514 ◽  
Author(s):  
P. P. Lee ◽  
J. H. Chem ◽  
L. P. Sadwick ◽  
R. J. Hwu ◽  
H. Balasubramaniam ◽  
...  

ABSTRACTThe lack of high-temperature thermodynamically stable contacts has been a limiting factor for III-V compound semiconductor metallization. The instability of metal/semiconductor contacts at higher temperatures arises due to factors such as thermodynamic instability at the interface, lack of chemical inertness especially to oxygen containing ambients and a large lattice mismatch to the substrate. Our studies of two rare-earth compounds, dysprosium phosphide (DyP) and dysprosium arsenide (DyAs), demonstrate their potential to address the above problems. The growth and characterization of these two materials and their heterostructures will be presented.Both the DyP and DyAs epilayers were grown using MBD. DyP has an excellent room temperature lattice match to GaAs with a mismatch of about 0.01%, whereas DyAs has a lattice mismatch to GaAs on the order of about 2.4%. Consistent high quality DyP and good quality DyAs epilayers, as characterized by TEM, XRD, AES and AFM were obtained for growth temperatures between 500°C and 600°C. The growth rate was about 0.5 μm/hr and and the RMS roughness of the epilayer surface was typically about 0.5 nm and 1.3 nm for Dyp and DyAs, respectively.Electrical characterization of DyP and DyAs include variable temperature Hall measurements, four point probe, TLM, I-V and C-V measurements. Results show that both DyP and DyAs epilayers are n-type with electron concentration between 3–4 × 1020cm−3 and 2–3×1021cm−3, respectively. The room temperature mobility and resistivity of DyP are 300 cm2/Vsec and 60 μ Ω cm, respectively. The room temperature mobility of DyAs is about 50 cm2/Vsec. DyP forms a Schottky barrier to GaAs with a barrier height of 0.81eV and DyAs forms a weak Schottkyt barrier to GaAs. All relevant data will be presented along with schemes for using DyP and DyAs as potential interconnects to III-V compound semiconductors.


1969 ◽  
Vol 19 (4) ◽  
pp. 437-440 ◽  
Author(s):  
I.R. Harris ◽  
R.C. Mansey ◽  
M. Slanicka ◽  
K.N.R. Taylor

2021 ◽  
Author(s):  
Ping-Ru Su ◽  
Tao Wang ◽  
Pan-Pan Zhou ◽  
Xiao-Xi Yang ◽  
Xiao-Xia Feng ◽  
...  

Abstract Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As a proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.


Author(s):  
Simon Engelbert ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The structures of the equiatomic stannides RERhSn with the smaller rare earth elements Y, Gd-Tm and Lu were reinvestigated on the basis of temperature-dependent single crystal X-ray diffraction data. GdRhSn crystallizes with the aristotype ZrNiAl at 293 and 90 K. For RE = Y, Tb, Ho and Er the HP-CeRuSn type (approximant with space group R3m) is already formed at room temperature, while DyRhSn adopts the HP-CeRuSn type below 280 K. TmRhSn and LuRhSn show incommensurate modulated variants with superspace groups P31m(1/3; 1/3; γ) 000 (No. 157.1.23.1) (γ = 3/8 for TmRhSn and γ = 2/5 for LuRhSn). The driving force for superstructure formation (modulation) is a strengthening of Rh–Sn bonding. The modulation is expressed in a 119Sn Mössbauer spectrum of DyRhSn at 78 K through line broadening.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Ekaterina Orlova ◽  
Elena Kharitonova ◽  
Timofei Sorokin ◽  
Alexander Antipin ◽  
Nataliya Novikova ◽  
...  

The literature data and the results obtained by the authors on the study of the structure and properties of a series of polycrystalline and single-crystal samples of pure and Mg-doped oxymolybdates Ln2MoO6 (Ln = La, Pr, Nd) are analyzed. Presumably, the high-temperature phase I41/acd of Nd2MoO6 single crystals is retained at room temperature. The reason for the loss of the center of symmetry in the structures of La2MoO6 and Pr2MoO6 and the transition to the space group I4¯c2 is the displacement of oxygen atoms along the twofold diagonal axes. In all structures, Mg cations are localized near the positions of the Mo atoms, and the splitting of the positions of the atoms of rare-earth elements is found. Thermogravimetric studies, as well as infrared spectroscopy data for hydrated samples of Ln2MoO6 (Ln = La, Pr, Nd), pure and with an impurity of Mg, confirm their hygroscopic properties.


1979 ◽  
Vol 14 (4) ◽  
pp. 455-461 ◽  
Author(s):  
Markku Leskelä ◽  
Lauri Niinistö ◽  
Hervé Dexpert ◽  
Yves Charreire
Keyword(s):  

1984 ◽  
Vol 37 ◽  
Author(s):  
L. H. Greene ◽  
W. L. Feldmann ◽  
J. M. Rowell ◽  
B. Batlogg ◽  
R. Hull ◽  
...  

AbstractWe report the observation of a higher degree of preferred crystalline orientation in Nb/rare earth superlattices for modulation wavelengths in the range of 200 Å to 500 Å than that exhibited by single component films. All films and multilayers are sputter deposited onto room temperature sapphire substrates. Electronic transport measurements also show that the residual resistance ratio is higher and the room temperature resistivity is lower than for multilayers of either greater or lower periodicities. Transmission electron micrographs (TEM) showing excellent layering, grain size comparable to the layer thickness, and evidence of some degree of epitaxy are presented.


Sign in / Sign up

Export Citation Format

Share Document