The viscocity of carbon dioxide in the neighbourhood of the critical point

Physica ◽  
1964 ◽  
Vol 30 (1) ◽  
pp. 161-181 ◽  
Author(s):  
J. Kestin ◽  
J.H. Whitelaw ◽  
T.F. Zien
Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


1951 ◽  
Vol 23 (4) ◽  
pp. 423-429 ◽  
Author(s):  
N. S. Anderson ◽  
L. P. Delsasso

Author(s):  
Giacomo Persico ◽  
Lorenzo Toni ◽  
Paolo Gaetani ◽  
Ernani Fulvio Bellobuono ◽  
Alessandro Romei ◽  
...  

Abstract Closed Joule-Bryton cycles operating with carbon dioxide in supercritical conditions (sCO2) are nowadays collecting a significant scientific interest, due to their high potential efficiency, the compactness of their components, and the flexibility that makes them suitable to exploit diverse energy sources. However, the technical implementation of sCO2 power systems introduces new challenges related to the design and operation of the components. The compressor, in particular, operates in a thermodynamic condition close to the critical point, whereby the fluid exhibits significant non-ideal gas effects and is prone to phase change in the intake region of the machine. These new challenges require novel design concepts and strategies, as well as proper tools to achieve reliable predictions. In the present study, we consider an exemplary sCO2 power cycle with main compressor operating in proximity to the critical point, with an intake entropy level of the fluid lower than the critical value. In this condition, the phase change occurs as evaporation/flashing, thus resembling cavitation phenomena observed in liquid pumps, even though with specific issues associated to compressibility effects occurring in both the phases. The flow configuration is therefore highly nonconventional and demands the development of proper tools for fluid and flow modeling, which are instrumental for the compressor design. The paper discusses the modeling issues from the thermodynamic perspective and then highlighting the implications on the compressor aerodynamics. We propose tailored models to account for the effect of the phase change in 0D mean-line design tools as well as in fully 3D computational fluid-dynamic (CFD) simulations. In this way, a design strategy is build-up as a combination of mean-line tools, industrial design experience, and CFD for detailed flow analysis. The application of the design strategy reveals that the potential onset of the phase change might alter significantly the performance and operation of the compressor, both in design and in off-design conditions.


2004 ◽  
Vol 34 (1) ◽  
pp. 86-90 ◽  
Author(s):  
V G Arakcheev ◽  
Viktor N Bagratashvili ◽  
A A Valeev ◽  
Vyacheslav M Gordienko ◽  
Vyacheslav V Kireev ◽  
...  

Author(s):  
Chang Hyeon Lim ◽  
Gokul Pathikonda ◽  
Sandeep Pidaparti ◽  
Devesh Ranjan

Abstract Supercritical carbon dioxide (sCO2) power cycles have the potential to offer a higher plant efficiency than the traditional Rankine superheated/supercritical steam cycle or Helium Brayton cycles. The most attractive characteristic of sCO2 is that the fluid density is high near the critical point, allowing compressors to consume less power than conventional gas Brayton cycles and maintain a smaller turbomachinery size. Despite these advantages, there still exist unsolved challenges in design and operation of sCO2 compressors near the critical point. Drastic changes in fluid properties near the critical point and the high compressibility of the fluid pose several challenges. Operating a sCO2 compressor near the critical point has potential to produce two phase flow, which can be detrimental to turbomachinery performance. To mimic the expanding regions of compressor blades, flow through a converging-diverging nozzle is investigated. Pressure profiles along the nozzle are recorded and presented for operating conditions near the critical point. Using high speed shadowgraph images, onset and growth of condensation is captured along the nozzle. Pressure profiles were calculated using a one-dimensional homogeneous equilibrium model and compared with experimental data.


Author(s):  
Hemant Kumar ◽  
Chetan S. Mistry

Abstract The Supercritical carbon-dioxide Brayton cycle main attraction is due to the Supercritical characteristic of the working fluid, carbon-dioxide (SCO2). Some of the advantages of using SCO2 are relatively low turbine inlet temperature, the compression work will be low, and the system will be compact due to the variation of thermodynamic properties (like density, and specific heat ratio) of SCO2 near the critical point. SCO2 behave more like liquid when its state is near the critical point (Total Pressure = 7.39 MPa, Total Temperature = 305 K), operating compressor inlet near critical point can minimize compression work. For present study the centrifugal compressor was designed to operate at 75,000 rpm with pressure ratio (P.R) = 1.8 and mass flow rate = 3.53 kg/s as available from Sandai report. Meanline design for centrifugal compressor with SCO2 properties was done. The blade geometry was developed using commercial CAD Ansys Bladegen. The flow domain was meshed using Ansys TurboGrid. ANSYS CFX was used as a solver for present numerical study. The thermodynamic properties of SCO2 were imported from the ANSYS flow material library using SCO2.RPG [NIST thermal physics properties of fluid system]. In order to ensure the change in flow physics the mesh independence study was also conducted. The present paper discuss about the performance and flow field study targeting different mass flow rates as exit boundary condition. The comparison of overall performance (Pressure Ratio, the Blade loading, Stage efficiency and Density variation) was done with three different mass flow rates. The designed and simulated centrifugal compressor meets the designed pressure rise requirement. The variation of mass flow rate on performance of centrifugal compressor was tend to be similar to conventional centrifugal compressor. The paper discusses about the effect of variation in density, specific heat ratio and pressure of SCO2 with different mass flow outlet condition. The performance map of numerical study were validated with experiment results and found in good agreement with experimental results. The change in flow properties within the rotor flow passage are found to be interesting and very informative for future such centrifugal compressor design for special application of SCO2 Brayton cycle. 80% mass flow rate has given better results in terms of aerodynamic performance. Abrupt change in thermodynamic properties was observed near impeller inlet region. Strong density variations are observed at compressor inlet.


Author(s):  
Haoxiang Chen ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Hongdan Liu

Abstract Supercritical carbon dioxide (S-CO2) Brayton power cycle has attracted a lot of attention around the world in energy conversion field. It takes advantage of the high density of CO2 near the critical point while maintaining low viscosity to reduce compressor power and achieve high cycle efficiency. However, as CO2 approaches to its critical point, the thermodynamic properties of CO2 vary dramatically with small changes in temperature or pressure. As a result, the density of the working fluid varies significantly at the compressor inlet in the practical cycle if operating near the critical point, especially for small-scale cycles and air-cooled cycles, which leads to compressors operating out of the flow range, even being damaged. Concerns of large density variations at the inlet of the compressor result in S-CO2 compressor designers selecting compressor inlet conditions away from the critical point, thereby increasing compressor power. In this paper, a criterion to choose inlet pressure and inlet temperature of compressors as the design inlet condition is proposed, which is guaranteeing ±50% change in inlet specific volume within ±3 °C variation in inlet temperature. By the criterion, 8 MPa and 34.7 °C is selected as the design inlet condition. According to design requirements of the cycle, a S-CO2 centrifugal compressor is designed through 1-D design methodology. Based on the two-zone model, the effects of compressor inlet condition including inlet pressure and inlet temperature on the compressor performance are analyzed in detail. In practical operation, the compressor inlet condition is varied. Thus, an accurate prediction of compressor performance under different inlet conditions is necessary. The traditional correction method is not suitable for S-CO2 compressor. Dimensionless specific enthalpy rise is used to correct pressure ratio by the real gas table. And the S-CO2 compressor performance can be predicted correctly under different inlet conditions.


Sign in / Sign up

Export Citation Format

Share Document