On the diurnal variations of total mass density, number density and temperature in the upper thermosphere

1973 ◽  
Vol 21 (8) ◽  
pp. 1457-1459 ◽  
Author(s):  
R.J. Moffett
1977 ◽  
Vol 4 (2) ◽  
pp. 33-33
Author(s):  
M. Joeveer ◽  
J. Einasto

It is possible to estimate the galactic mass density in the solar neighbourhood either directly by summing up the mass densities of individual subsystems of stars and interstellar matter or indirectly from dynamical considerations.Observational data on the number density of visible stars lead to mutually consistent results on the stellar component of the mass density. The mean of different estimates is ⍴stars=0.052±0.010 Mʘpc−3. By adding the probable contributions of intrinsically faint undetected objects and of interstellar matter the value ⍴=0.09±0.02 Mʘpc−3 has been obtained for the total mass density.


Author(s):  
M. K. Lamvik ◽  
A. V. Crewe

If a molecule or atom of material has molecular weight A, the number density of such units is given by n=Nρ/A, where N is Avogadro's number and ρ is the mass density of the material. The amount of scattering from each unit can be written by assigning an imaginary cross-sectional area σ to each unit. If the current I0 is incident on a thin slice of material of thickness z and the current I remains unscattered, then the scattering cross-section σ is defined by I=IOnσz. For a specimen that is not thin, the definition must be applied to each imaginary thin slice and the result I/I0 =exp(-nσz) is obtained by integrating over the whole thickness. It is useful to separate the variable mass-thickness w=ρz from the other factors to yield I/I0 =exp(-sw), where s=Nσ/A is the scattering cross-section per unit mass.


2018 ◽  
Author(s):  
Uwe Berger ◽  
Gerd Baumgarten ◽  
Jens Fiedler ◽  
Franz-Josef Lübken

Abstract. In this paper we present a new description about statistical probability density distributions (pdfs) of Polar Mesospheric Clouds (PMC) and noctilucent clouds (NLC). The analysis is based on observations of maximum backscatter, ice mass density, ice particle radius, and number density of ice particles measured by the ALOMAR RMR-lidar for all NLC seasons from 2002 to 2016. From this data set we derive a new class of pdfs that describe the statistics of PMC/NLC events which is different from previously statistical methods using the approach of an exponential distribution commonly named g-distribution. The new analysis describes successfully the probability statistic of ALOMAR lidar data. It turns out that the former g-function description is a special case of our new approach. In general the new statistical function can be applied to many kinds of different PMC parameters, e.g. maximum backscatter, integrated backscatter, ice mass density, ice water content, ice particle radius, ice particle number density or albedo measured by satellites. As a main advantage the new method allows to connect different observational PMC distributions of lidar, and satellite data, and also to compare with distributions from ice model studies. In particular, the statistical distributions of different ice parameters can be compared with each other on the basis of a common assessment that facilitate, for example, trend analysis of PMC/NLC.


2010 ◽  
Vol 28 (1) ◽  
pp. 27-36 ◽  
Author(s):  
M. Spasojevic ◽  
B. R. Sandel

Abstract. For a set of five moderate disturbance events, we calculate the total number of He+ ions removed the plasmasphere using calibrated global EUV images. In each of the events, between ~0.6 and 2.2×1030 He+ ions are removed from a region of the inner magnetosphere from L=1.5 to 5.5. This loss constitutes between 20% and 42% of the initial He+ distribution. The lost percentage is correlated with the number of hours of strongly positive solar wind electric field (Ey>2.5 mV/m). Also, the total amount of material removed from the plasmasphere is estimated by using several values of the He+ to H+ number density ratio. The total mass lost is found to be in the range of 20 to 80 metric tons although for each individual case the estimate can vary by over 50% depending on assumed density ratio. We also attempt to distinguish between losses to the ionosphere and losses to the dayside boundary layers by estimating losses interior and exterior to the newly formed plasmapause boundary. For the events studied, losses inside the new plasmapause constitute between 24% to 54% of the total number of He+ ions lost.


2012 ◽  
Vol 3 (2) ◽  
pp. 266-275 ◽  
Author(s):  
Joseph P. Fleskes ◽  
Brian J. Halstead ◽  
Michael L. Casazza ◽  
Peter S. Coates ◽  
Jeffrey D. Kohl ◽  
...  

Abstract Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field treatment should be tracked and impacts of postharvest field treatment and other farming practices on waste rice seed availability should be investigated.


1970 ◽  
Vol 38 ◽  
pp. 51-60
Author(s):  
J. Einasto ◽  
U. Rümmel

A model for the Andromeda galaxy, M 31, has been derived from the available radio, photometric, and spectroscopic data. The model consists of four components – the nucleus, the bulge, the disc, and the flat component.For all components the following functions have been found: the mass density; the mass-to-light ratio; the velocity dispersions in three perpendicular directions (for the plane of symmetry and the axis of the galaxy); the deviation angle of the major axis of the velocity ellipsoid from the plane of symmetry; the centroid velocity (for the plane of symmetry).Our model differs in two points from the models obtained by other authors: the central concentration of mass is higher (in the nucleus the mass-to-light ratio is about 170), and the total mass of the galaxy (200 × 109 solar masses) is smaller. The differences can be explained by different rotation curves adopted, and by attributing more weight to photometric and spectroscopic data in the case of our model.


2019 ◽  
Vol 491 (4) ◽  
pp. 5073-5082 ◽  
Author(s):  
F Pozzi ◽  
F Calura ◽  
G Zamorani ◽  
I Delvecchio ◽  
C Gruppioni ◽  
...  

ABSTRACT We derive for the first time the dust mass function (DMF) in a wide redshift range, from z ∼ 0.2 up to z ∼ 2.5. In order to trace the dust emission, we start from a far-IR (160-μm) Herschel selected catalogue in the COSMOS field. We estimate the dust masses by fitting the far-IR data (λrest$\,\, \buildrel\gt \over \sim \,\,$50 μm) with a modified black body function and we present a detailed analysis to take into account the incompleteness in dust masses from a far-IR perspective. By parametrizing the observed DMF with a Schechter function in the redshift range 0.1 < z ≤ 0.25, where we are able to sample faint dust masses, we measure a steep slope (α ∼1.48), as found by the majority of works in the Local Universe. We detect a strong dust mass evolution, with $M_{\rm d}^{\star }$ at z ∼ 2.5 almost 1 dex larger than in the local Universe, combined with a decrease in their number density. Integrating our DMFs, we estimate the dust mass density (DMD), finding a broad peak at z ∼ 1, with a decrease by a factor of ∼ 3 towards z ∼ 0 and z ∼ 2.5. In general, the trend found for the DMD mostly agrees with the derivation of Driver et al., another DMD determination based also on far-IR detections, and with other measures based on indirect tracers.


2004 ◽  
Vol 220 ◽  
pp. 69-76 ◽  
Author(s):  
W. J. G de Blok

Low Surface Brightness (LSB) galaxies are dominated by dark matter. High-resolution rotation curves suggest that their total mass-density distributions are dominated by constant density cores rather than the steep and cuspy distributions found in Cold Dark Matter (CDM) simulations. the data are best described by a model with a soft core with an inner power-law mass-density slope α = 0.2 ± 0.2. However no single universal halo profile provides an adequate description of the data. the observed mass profiles appear to be inconsistent with ACDM.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3426-3436 ◽  
Author(s):  
MARTIN L. PERL

Over the last decade, astronomical observations show that the acceleration of the expansion of the universe is greater than expected from our understanding of conventional general relativity, the mass density of the visible universe, the size of the visible universe and other astronomical measurements. The additional expansion has been attributed to a variety of phenomenon that have been given the general name of dark energy. Dark energy in the universe seems to comprise a majority of the energy in the visible universe amounting to about three times the total mass energy. But locally the dark energy density is very small. However it is not zero. In this paper I describe the work of others and myself on the question of whether dark energy density can be directly detected. This is a work-in-progress and I have no answer at present.


Sign in / Sign up

Export Citation Format

Share Document