The Anomalous Roxana Silt and Mid-Wisconsinan Events in and Near Southern Michigan

1988 ◽  
Vol 29 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Harold A. Winters ◽  
John J. Alford ◽  
Richard L. Rieck

Thick deposits of Roxana Silt are recognized only along the Illinois River (downstream from the Woodfordian terminal moraine) and are generally interpreted as being mainly loess, with the bulk accumulating from about 40,000 to 30,000 yr ago in association with an Altonian-age glacier in northeastern Illinois. Yet 11 14C dates indicate that southern Michigan was not ice-covered during that interval; thus, any proximate ice must have, at best, been restricted to Great Lakes basins, an interpretation supported by the absence of late Altonian till at critically located Michigan, and nearby, sites. Late mid-Wisconsinan ice did, however, obstruct eastern drainage of the ancestral Great Lakes. Such glacial blockage, the distribution of many Michigan organic deposits within pre-Woodfordian lacustrine sediments, and radiocarbon dates suggest that, more than once, late Altonian lakes associated with the Lake Michigan basin drained into the Illinois River. Erosion of lake and spillway bluffs along with repeated river fluctuations provided a source for the thick, geographically restricted Roxana Silt. Meanwhile, along other nearby rivers the supply was meager and the loess thin.

2009 ◽  
Vol 71 (3) ◽  
pp. 397-408 ◽  
Author(s):  
Andy Breckenridge ◽  
Thomas C. Johnson

AbstractBetween 10,500 and 9000 cal yr BP, δ18O values of benthic ostracodes within glaciolacustrine varves from Lake Superior range from − 18 to − 22‰ PDB. In contrast, coeval ostracode and bivalve records from the Lake Huron and Lake Michigan basins are characterized by extreme δ18O variations, ranging from values that reflect a source that is primarily glacial (∼ − 20‰ PDB) to much higher values characteristic of a regional meteoric source (∼ − 5‰ PDB). Re-evaluated age models for the Huron and Michigan records yield a more consistent δ18O stratigraphy. The striking feature of these records is a sharp drop in δ18O values between 9400 and 9000 cal yr BP. In the Huron basin, this low δ18O excursion was ascribed to the late Stanley lowstand, and in the Lake Michigan basin to Lake Agassiz flooding. Catastrophic flooding from Lake Agassiz is likely, but a second possibility is that the low δ18O excursion records the switching of overflow from the Lake Superior basin from an undocumented northern outlet back into the Great Lakes basin. Quantifying freshwater fluxes for this system remains difficult because the benthic ostracodes in the glaciolacustrine varves of Lake Superior and Lake Agassiz may not record the average δ18O value of surface water.


2020 ◽  
pp. 107-127 ◽  
Author(s):  
John D. Richards

Cahokia’s northern hinterland can be conceptualized as extending north from the central Illinois River valley into the western and upper Great Lakes region. The northern tier of this hinterland can be thought of as a region north of the Apple River area of northwest Illinois and south of a line extending east from the mouth of the St. Croix River to the western shore of Lake Michigan. This area includes a wide range of landscapes, biotas, and cultures and this diversity is mirrored in the Cahokia-related manifestations found throughout the region. This chapter provides a brief comparison of three northern tier sites/complexes including Trempealeau, Fred Edwards, and Aztalan in order to highlight the diversity of Mississippian-related occupations in the area.


2010 ◽  
Vol 31 (1-2) ◽  
pp. 53-59 ◽  
Author(s):  
E. B. Evenson ◽  
D. M. Mickelson ◽  
W. R. Farrand

Meaningful correlations of late glacial events between areas as distant as the Great Lakes and southern Quebec depend on the establishment of detailed local chronologies, mostly from studies in the Lake Michigan basin and the St. Lawrence lowland now holding the most promise for a radiometrically controlled record of the late glacial (ca. 14,000-8000). Based on recent investigations in the Lake Michigan region, we propose a revision in the déglaciation pattern and stratigraphie nomenclature. Although oscillatory glacial retreat began to dominate over readvance about 17,000 years BP, we define late Wisconsinan as beginning at ca. 14,000 when the ice withdrew from the Lake Border Morainic system. Following the Cary-Port Huron retreat, the ice read-vanced (350 km) depositing the red Shorewood Till. This was followed by a minor retreat and then by deposition of the Manitowoc Till. Continued retreat eventually uncovered an eastward outlet and Lake Chicago dropped to the Two Creeks low-water level. This déglaciation was not as extensive as previously assumed. The post-Twocreekan readvance (125 km) to the Two Rivers moraine oc-cured around 11,850 years BP. This sequence argues for a normal, climatically controlled progressive déglaciation rather than one interrupted by a major post-Twocreekan (formally Valderan) surge. Based on the knowledge that the Valders Till is late Woodfordian in age we have proposed the time-stratigraphic term "Greatlakean" as a substitute for the now misleading term "Valderan".


1988 ◽  
Vol 29 (2) ◽  
pp. 113-128 ◽  
Author(s):  
Ardith K. Hansel ◽  
David M. Mickelson

Radiocarbon age control on the type Glenwood, Calumet, and Toleston shoreline features and on the abandoned Chicago outlet at the south end of the Lake Michigan basin provides a basis for reevaluating the timing and causes of high lake phases in the basin. Radiocarbon dates suggest that Glenwood-level (195 m) shoreline features formed between 14,100 and 12,700 yr B.P. (Glenwood I and II phases), Calumet-level (189 m) between 12,700 and 11,000 yr B.P. (Calumet I and II phases), and Toleston-level (184.5 m) between 5000 and 4000 yr B.P. (Nipissing phase), and that the Chicago outlet was cut to its present level (180 m) on bedrock while the lake was at the Glenwood level. This new chronology is inconsistent with J H. Bretz' hypothesis ((1951) American Journal of Science 249 , 401–429) that the progressive lowering of lake level resulted from episodic down-cutting of the outlet. Instead, the changes in lake level appear to relate to changes in the amount of glacial meltwater and precipitation entering the basin. We hypothesize that the Glenwood phases correspond with times when discharge from the Huron and Erie basins also entered the Lake Michigan basin (Lake Border and early Port Huron glacial phases), the Calumet phases with times when drainage was from the Lake Michigan basin alone (late Port Huron and Two Rivers glacial phases), and the Nipissing phase with the postglacial middle Holocene transgression caused by differential uplift in the basin. Estimates of relative net inputs to the basin during the Glenwood, Calumet, and Nipissing lake phases are consistent with estimates of relative outputs (i.e., discharge through the Chicago outlet); the magnitude of relative differences in inputs and outputs between phases is sufficient to explain lake-level changes of 4.5 to 6 m.


2012 ◽  
Vol 77 (3) ◽  
pp. 591-608 ◽  
Author(s):  
William A. Lovis ◽  
G. William Monaghan ◽  
Alan F. Arbogast ◽  
Steven L. Forman

AbstractAnalysis of regional site taphonomy that incorporates depositional and postdepositional histories has become increasingly important in understanding the nature of preserved site populations and the strategies necessary for their discovery. We applied a systematic archival and field strategy directed at understanding such taphonomic processes in the coastal sand dunes of the northern and eastern Lake Michigan basin, and coupled these with a tactically directed program of OSL, 14C, and AMS dating. We demonstrate that long-term geological processes including lake level variation, episodic dune activation and stabilization, and the long-term effects of postglacial isostatic adjustments have markedly affected the potential for preservation of sites in coastal dune contexts over time and across subregions of the basin. Preservation potential for different time periods in coastal dunes is largely not synchronous with that of southern Michigan floodplains, posing substantial inferential problems. The archaeology of coastal dunes specifically, and coastal zones generally, must be used with extreme caution when cast against archaeological data from landforms with different formation processes and histories. While particularly true for the Great Lakes region, these results have implications for regional research broadly.


2018 ◽  
Vol 83 (2) ◽  
pp. 345-355 ◽  
Author(s):  
Rebecca K. Albert ◽  
Susan M. Kooiman ◽  
Caitlin A. Clark ◽  
William A. Lovis

There is no recorded maize (Zea maysspp.mays) from sites predating circa cal AD 800 in the northern Lake Michigan or Lake Superior basins of the western Great Lakes, despite the presence of maize microbotanicals including phytoliths and starches in Michigan, New York, and Quebec as early as 400 cal BC. To evaluate the potential for an earlier maize presence in the northern Lake Michigan basin, samples of carbonized food residues adhering to 16 ceramic vessels were obtained from the Winter site (20DE17) located on the Garden Peninsula in the northern Lake Michigan basin. Each sample was split and sent to two analysts. Both analysts identified low incidences of maize starch and phytoliths in multiple samples, with overlapping identifications on several. Three direct accelerator mass spectrometry dates on the carbonized residues reveal maize incorporated into the residues as early as the second century cal BC, 800 years before any regional macrobotanical evidence. Although the method of dispersal cannot be determined, these results support the proposition that initial northern dispersal of maize in the region may have been nearly 800 years earlier than macrobotanical evidence would suggest and is consistent with the timing of its introduction to the lower Great Lakes area.


Author(s):  
Ian W. Housman ◽  
Mark D. Nelson ◽  
Charles H. Perry ◽  
Kirk M. Stueve ◽  
Chengquan Huang

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 430 ◽  
Author(s):  
Ronald S. Zalesny ◽  
Andrej Pilipović ◽  
Elizabeth R. Rogers ◽  
Joel G. Burken ◽  
Richard A. Hallett ◽  
...  

Poplar remediation systems are ideal for reducing runoff, cleaning groundwater, and delivering ecosystem services to the North American Great Lakes and globally. We used phyto-recurrent selection (PRS) to establish sixteen phytoremediation buffer systems (phyto buffers) (buffer groups: 2017 × 6; 2018 × 5; 2019 × 5) throughout the Lake Superior and Lake Michigan watersheds comprised of twelve PRS-selected clones each year. We tested for differences in genotypes, environments, and their interactions for health, height, diameter, and volume from ages one to four years. All trees had optimal health. Mean first-, second-, and third-year volume ranged from 71 ± 26 to 132 ± 39 cm3; 1440 ± 575 to 5765 ± 1132 cm3; and 8826 ± 2646 to 10,530 ± 2110 cm3, respectively. Fourth-year mean annual increment of 2017 buffer group trees ranged from 1.1 ± 0.7 to 7.8 ± 0.5 Mg ha−1 yr−1. We identified generalist varieties with superior establishment across a broad range of buffers (‘DM114’, ‘NC14106’, ‘99038022’, ‘99059016’) and specialist clones uniquely adapted to local soil and climate conditions (‘7300502’, ‘DN5’, ‘DN34’, ‘DN177’, ‘NM2’, ‘NM5’, ‘NM6’). Using generalists and specialists enhances the potential for phytoremediation best management practices that are geographically robust, being regionally designed yet globally relevant.


1980 ◽  
Vol 17 (11) ◽  
pp. 1454-1461 ◽  
Author(s):  
Rolf W. Mathewes ◽  
John A. Westgate

Ash-grade Bridge River tephra, identified as such on the basis of shard habit, modal mineralogy, and composition of ilmenite, occurs in sedimentary cores from three lakes located to the south of the previously documented plume and necessitates a significant enlargement of the fallout area of that tephra in southwestern British Columbia.These new, more southerly occurrences are probably equivalent to the ~2350 year old Bridge River tephra, although it can be argued from the evidence at hand that the 14C dates and biotite-rich nature support relationship to a slightly earlier Bridge River event.Large differences exist in the 14C age of sediments immediately adjacent to the Bridge River tephra at these three lake sites; maximum ages of 3950 ± 170 years BP (GX-5549) and 3750 ± 210 years BP (I-10041) were obtained at Phair and Fishblue lakes, respectively, whereas the corresponding age at Horseshoe Lake is only 2685 ± 180 years BP (GX-5757). The two older dates are considered to be significantly affected by old carbon contamination for the bedrock locally consists of calcareous sedimentary rocks and the lacustrine sediments are very calcareous. The 14C date from Horseshoe Lake, which occurs in an area of igneous rocks, appears to be only slightly too old relative to the ~2350 year old Bridge River tephra.Well-dated tephra beds, therefore, can be very useful in assessing the magnitude of old carbon errors associated with radiocarbon dates based on limnic sediments. Calcareous gyttja deposits beneath Bridge River tephra within the study area exhibit old carbon errors of the order of 1350–1550 years.


Sign in / Sign up

Export Citation Format

Share Document