Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the last glaciation

1991 ◽  
Vol 36 (1) ◽  
pp. 72-93 ◽  
Author(s):  
Frank Sirocko ◽  
Michael Sarnthein ◽  
Heinz Lange ◽  
Helmut Erlenkeuser

AbstractAccumulation rates of biogenic and lithogenic components were studied in 39 turbidite-free, well-dated sediment cores from the northern Indian Ocean to define the proportions of fluvial and eolian input and to reconstruct Quaternary patterns of coastal upwelling. The majority of dust deposited in the western Arabian Sea during the Holocene (about 100 × 106t yr−1) is advected from Arabia by northwesterly winds, which overlie the low-level southwest monsoon. The glacial increase in dust flux to 160 × 106t yr−1 culminated in the northern Arabian Sea, most probably due to (i) entrainment of dust, rich in chlorite, dolomite, and lithogenic carbonate in the then-dry Persian Gulf, and (ii) a southward shift of the mean position of the southwest monsoon during glacial summer. This shift is recorded in reduced accumulation rates of biogenic opal and increased rates of marine carbonate off Somalia and Oman. Both the terrigenous and biogenic sediment records show that the northwesterly winds and the southwest monsoon persisted over the last 27,000 yr, as well as the Asian continental summer heat low. However, the glacial seasonal time span of the southwest monsoon season was much reduced, most likely because of a delay in the seasonal onset of the southwest monsoon.

2020 ◽  
Vol 50 (4) ◽  
pp. 849-865 ◽  
Author(s):  
Yuhong Zhang ◽  
Yan Du ◽  
W. N. D. S Jayarathna ◽  
Qiwei Sun ◽  
Ying Zhang ◽  
...  

AbstractA prolonged high-salinity event in the northern Arabian Sea, to the east of the Gulf of Oman, during 2014–17 was identified based on Argo datasets. The prolonged event was manifested as enhanced spreading of the surface Arabian Sea high-salinity water and the intermediate Persian Gulf water. We used satellite altimetric data and geostrophic current data to understand the oceanic processes and the salt budget associated with the high-salinity event. The results indicated that the strengthened high-salinity advection from the Gulf of Oman was one of the main causes of the salinity increase in the northern Arabian Sea. The changes of the seasonally dependent eddies near the mouth of the Gulf of Oman dominated the strengthened high-salinity advection during the event as compared with the previous 4-yr period: the westward shifted cyclonic eddy during early winter stretched to the remote western Gulf of Oman, which carried the higher-salinity water to the northern Arabian Sea along the south coast of the Gulf. An anomalous eddy dipole during early summer intensified the eastward Ras Al Hadd Jet and its high-salinity advection into the northern Arabian Sea. In addition, the weakened low-salinity advection by coastal currents along the Omani coast caused by the weakened southwest monsoon contributed to the maintenance of the high-salinity event. This prolonged high-salinity event reflects the upper-ocean responses to the monsoon change and may affect the regional hydrography and biogeochemistry extensively.


2020 ◽  
Author(s):  
Yuntao Wang ◽  
Wentao Ma ◽  
Feng Zhou ◽  
Chai Fei

<p>Sixteen years satellite observations are used to investigate the frontogenesis, frontal variability and its impact on chlorophyll in the Arabian Sea. Large frontal probability (FP) and high chlorophyll mainly happens near the coast, e.g., near Somalia and Oman, and its value generally decreases with offshore distance. An Empirical Orthogonal Function (EOF) is used to disentangle the spatial and temporal variability of front and chlorophyll. Prominent seasonal cycle of frontal activities is identified, peaking in summer when southwest wind prevails. The seasonality for chlorophyll is same with wind and front near Somalia, which largely impacted by monsoon. During summer, the southwest monsoon drives offshore Ekman transport and induces coastal upwelling. It transports subsurface cold water and nutrients to the surface layer, which generates fronts and enhances chlorophyll, respectively. The frontal activities can be used as an indicator to determine the chlorophyll level that high chlorophyll happens when frontal probability gets higher than 2%. At anomalous field, stronger wind can induce higher frontal activities and chlorophyll. The impact of wind on frontogenesis can extend 1,000km offshore and a simplified linear regression is applied to quantify their relationship. The variability of wind leads chlorophyll by lags increasing with distance, indicating a horizontal offshore transport of coastal water. In winter, the northeast wind is not upwelling favorable, thus the frontal activities and chlorophyll are greatly reduced off Somalia. During this period, large chlorophyll is found in the north off Oman because of mixing, thus its relationship with front is less pronounced. In the upwelling regions, fronts act as an intermedia process that connecting the wind forcing and responses of ecosystem. The frontal activities in Arabian Sea is fundamentally important to improve our understanding of monsoon related ocean dynamics.</p>


2016 ◽  
Vol 16 (7) ◽  
pp. 4497-4509 ◽  
Author(s):  
Sanjeev Dwivedi ◽  
M. S. Narayanan ◽  
M. Venkat Ratnam ◽  
D. Narayana Rao

Abstract. Monsoon inversion (MI) over the Arabian Sea (AS) is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009–2013) of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are  ∼  2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO) (COSMIC), has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS) onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.


2017 ◽  
Author(s):  
Birgit Gaye ◽  
Anna Böll ◽  
Joachim Segschneider ◽  
Nicole Burdanowitz ◽  
Kay-Christian Emeis ◽  
...  

Abstract. At present the Arabian Sea has a permanent oxygen minimum zone (OMZ) at water depths between about 100 m and 1200 m. Active denitrification in this OMZ is recorded by enhanced δ15N values in the sediments. Sediment cores show a δ15N increase from early to late Holocene which is contrary to the trend in other regions of water column denitrification. We calculated composite sea surface temperature (SST) and δ15N in time slices of 1000 years of the last 25 ka to better understand the reasons for the establishment of the Arabian Sea OMZ and its response to changes in the Asian monsoon system. Pleistocene stadial δ15N values of 4–6 ‰ suggest that denitrification was inactive or weak. During interstadials (IS) and the entire Holocene, δ15N values of > 7 ‰ indicate enhanced denitrification and a stronger OMZ. This coincides with active monsoonal upwelling along the western margins of the basin as indicated by low SST. Stronger ventilation of the OMZ in the early to mid-Holocene period during the most intense southwest monsoon and vigorous upwelling is reflected in lower δ15N compared to the late Holocene. The displacement of the core of the OMZ from the region of maximum productivity in the western Arabian Sea to its present position in the northeast was established during the last 4–5 ka. This was probably caused by (i) rising oxygen consumption due to enhanced northeast monsoon driven biological productivity, in combination with (ii) reduced ventilation due to a longer residence time of OMZ waters.


2013 ◽  
Vol 10 (9) ◽  
pp. 15455-15517 ◽  
Author(s):  
K. Banse ◽  
S. W. A. Naqvi ◽  
P. V. Narvekar ◽  
J. R. Postel ◽  
D. A. Jayakumar

Abstract. The oxygen minimum zone (OMZ) of the Arabian Sea is the thickest of the three oceanic OMZs, which is of global biogeochemical significance because of denitrification in the upper part leading to N2 and N2O production. The residence time of the OMZ water is believed to be less than a decade. The upper few hundred meters of this zone are nearly anoxic but non-sulfidic and still support animal (metazoan) pelagic life, possibly as a result of episodic injections of O2 by physical processes. The very low O2 values obtained with the new STOX sensor in the eastern tropical South Pacific probably also characterize the Arabian Sea OMZ, but there is no apparent reason as to why the temporal trends of the historic data should not hold. We report on discrete measurements of dissolved O2 and NO2-, besides temperature and salinity, made between 1959 and 2004 well below the tops of the sharp pycno- and oxyclines near 150, 200, 300, 400, and 500 m depth. We assemble nearly all O2 determinations (originally, 849 values, 695 in the OMZ) by the visual endpoint detection of the iodometric Winkler procedure, which in our data base yields about 0.04 mL L−1 (∼2 μM) O2 above the endpoint from modern automated titration methods. We find 632 values acceptable (480 from 150 stations in the OMZ). The data are grouped in zonally-paired boxes of 1° lat. and 2° long. centered at 8°, 10°, 12°, 15°, 18°, 20°, and 21° N along 65° E and 67° E. The latitudes of 8–12° N, outside the OMZ, are only treated in passing. The principal results are as follows: (1) an O2 climatology for the upper OMZ reveals a marked seasonality at 200 to 500 m depth with O2 levels during the northeast monsoon and spring intermonsoon season elevated over those during the southwest monsoon season (median difference, 0.08 mL L−1 [3.5 μM]). The medians of the slopes of the seasonal regressions of O2 on year for the NE and SW monsoon seasons are −0.0043 and −0.0019 mL L−1 a−1, respectively (−0.19 and −0.08 μM a−1; n = 10 and 12, differing at p = 0.01); (2) four decades of statistically significant decreases of O2 between 15° and 20° N but a trend to a similar increase near 21° N are observed. The balance of the mechanisms that more or less annually maintain the O2 levels are still uncertain. At least between 300 and 500 m the annual reconstitution of the decrease is inferred to be due to lateral, isopycnal re-supply of O2, while at 200 (250?) m it is diapycnal, most likely by eddies. Similarly, recent models show large vertical advection of O2 well below the pycno-cum-oxycline. The spatial (within drift stations) and temporal (daily) variability in hydrography and chemistry is large also below the principal pycnocline. The seasonal change of hydrography is considerable even at 500 m. There is no trend in the redox environment for a quarter of a century at a GEOSECS station near 20° N. In the entire OMZ the slopes on year within seasons for the quite variable NO2- (taken as an indicator of active denitrification) do not show a clear pattern. Also, future O2 or nutrient budgets for the OMZ should not be based on single cruises or sections obtained during one season only. Steady state cannot be assumed any longer for the intermediate layers of the central Arabian Sea.


MAUSAM ◽  
2022 ◽  
Vol 52 (4) ◽  
pp. 655-658
Author(s):  
O. P. SINGH

Long term trends in the frequencies of cyclonic disturbances (i.e. depressions and cyclonic storms) and the cyclonic storms forming over the Bay of Bengal and the Arabian Sea during the southwest monsoon season (June-September) have been studied utilizing 110 years data from 1890-1999. There have been significant decreasing trends in both the frequencies but the frequency of cyclonic disturbances has diminished at a faster rate. The trend analysis shows that the frequency of cyclonic disturbances has decreased at the rate of about six to seven disturbances per hundred years in the monsoon season. The frequency of cyclonic storms of monsoon season .has decreased at the rate of , one to two cyclones per hundred years.


2014 ◽  
Vol 11 (8) ◽  
pp. 2237-2261 ◽  
Author(s):  
K. Banse ◽  
S. W. A. Naqvi ◽  
P. V. Narvekar ◽  
J. R. Postel ◽  
D. A. Jayakumar

Abstract. The oxygen minimum zone (OMZ) of the Arabian Sea is the thickest of the three oceanic OMZ. It is of global biogeochemical significance because of denitrification in the upper part leading to N2 and N2O production. The residence time of OMZ water is believed to be less than a decade. The upper few hundred meters of this zone are nearly anoxic but non-sulfidic and still support animal (metazoan) pelagic life, possibly as a result of episodic injections of O2 by physical processes. We report on discrete measurements of dissolved O2 and NO2–, temperature and salinity made between 1959 and 2004 well below the tops of the sharp pycnocline and oxycline near 150, 200, 300, 400, and 500 m depth. We assemble nearly all O2 determinations (originally there were 849 values, 695 of which came from the OMZ) by the visual endpoint detection of the iodometric Winkler procedure, which in our data base yields about 0.04 mL L−1 (~ 2 μM) O2 above the endpoint from modern automated titration methods. We acknowledge that much lower (nanomolar) O2 values have been measured recently with the STOX (Switchable Trace amount OXygen) sensor in the eastern tropical South Pacific, and that similar conditions may also prevail in the Arabian Sea OMZ. In spite of the error in O2 measurements at vanishingly low levels, we argue that the temporal trends of the historic data should still hold. We find 632 values acceptable (480 from 150 stations in the OMZ). The data are grouped in zonally paired boxes of 1° lat. and 2° long. centered at 8, 10, 12, 15, 18, 20, and 21° N along 65 and 67° E. The latitudes of 8–12° N, outside the OMZ, are treated in passing. The principal results are as follows: (1) an O2 climatology for the upper OMZ reveals a marked seasonality at 200 to 500 m depth with O2 levels during the northeast monsoon and spring intermonsoon seasons elevated over those during the southwest monsoon season (median difference, 0.08 mL L−1 [~ 3.5 μM]). The medians of the slopes of the seasonal regressions of O2 on year for each of the NE and SW monsoon seasons are −0.0043 and −0.0019 mL L−1 a−1, respectively (−0.19 and −0.08 μM a−1; n = 10 and 12, differing at p = 0.01); (2) four decades of statistically significant decreases of O2 between 15 and 20° N but an opposing trend toward an increase near 21° N are observed. The mechanisms of the balance that more or less annually maintain the O2 levels are still uncertain. At least between 300 and 500 m, the replenishment is inferred to be due to isopycnal re-supply of O2, while at 200 (or 250?) m it is diapycnal, most likely by eddies. Similarly, recent models show large vertical advection of O2 well below the pycnoclines and oxyclines. The NO2– distribution, taken as an indicator of active NO3– reduction, does not show a trend in the redox environment for a quarter of a century at a GEOSECS station near 20° N. In the entire OMZ, the regression slopes on year within seasons for the rather variable NO2– do not present a clear pattern but by other measures tended to an increase of NO2–. Vertical net hauls collect resident animal (metazoan) pelagic life in the NO2– maximum of the OMZ at O2 levels well below the lower limit of the Winkler titration; the extremely low O2 content is inferred from the presence of NO2– believed to be produced through microbial NO3– reduction. Instead of the difficult measurement by the STOX sensor, the relation between the very low O2 inferred from presence of NO2– and mesozooplankton should be studied with 100 to 150 L bottles rather than nets. The spatial (within drift stations) and temporal (daily) variability in hydrography and chemistry is large also below the principal pycnocline. The seasonal change of hydrography is considerable even at 500 m depth. Future O2 or nutrient budgets for the OMZ must not be based on single cruises or sections obtained during one season only. Steady state cannot be assumed any longer for the intermediate layers of the central Arabian Sea.


Sign in / Sign up

Export Citation Format

Share Document