A digital system for surface roughness analysis of plane and cylindrical parts

1987 ◽  
Vol 9 (2) ◽  
pp. 59-64 ◽  
Author(s):  
L. De Chiffre ◽  
H. Strøbæk Nielsen
2021 ◽  
Vol 7 (7) ◽  
pp. 67267-67276
Author(s):  
Emillyn Jones Greijal Dias Holanda ◽  
José Guilherme Neves ◽  
Milton Santamaria-Jr ◽  
Silvia Amélia Scudeler Vedovello ◽  
Ana Rosa Costa ◽  
...  

The aim of this study was to evaluate the surface properties of orthodontic resins with and without fluoride. Forty disks, measuring 2 mm thick by 6 mm in diameter, were made of 4 bracket-bonding composite resins (n=10): Transbond Plus Color Change-3M/Unitek (TPCC); Transbond XT- 3M/Unitek (TXT), Orthocem -FGM (OC); Orthocem UV Trace-FGM (OCUV). The discs were photoactivated for 40 seconds with irradiance of 450 mW/cm2 and manually polished in sequence by silicon carbide sandpapers with 1200 and 2000 grain size and finished with diamond paste and felt disc. The surface microhardness analysis was performed using a Shimadzu Micro Hardness Tester HMV-2,000 (Shimadzu Corporation, Kyoto, Japan) with a load of 50 gF and a 5 second penetration time. Surface roughness readings were taken using a Surf Corder Roughness Meter (SE 1700- Kosaka, Lisboa-Portugal). For data analysis, ANOVA (one-way) was used, followed by Tukey's post-test (?=0.05). The microhardness results showed a difference (p?0.05) in the means of the orthodontic resins between TPCC and TXT with the other groups. After the surface roughness analysis, the averages showed that TPCC resin showed higher roughness compared to OC and OCUV (p?0.05), and there was no statistical difference with TXT. It was concluded that statistically the composite resins with fluoride showed significant difference regarding hardness and roughness.


2009 ◽  
Vol 47 (7-8) ◽  
pp. 850-854 ◽  
Author(s):  
Nitin Sudani ◽  
Krishnan Venkatakrishnan ◽  
Bo Tan

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nitin Dixit ◽  
Varun Sharma ◽  
Pradeep Kumar

Purpose The surface roughness of additively manufactured parts is usually found to be high. This limits their use in industrial and biomedical applications. Therefore, these parts required post-processing to improve their surface quality. The purpose of this study is to finish three-dimensional (3D) printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) parts using abrasive flow machining (AFM). Design/methodology/approach A hydrogel-based abrasive media has been developed to finish 3D printed parts. The developed abrasive media has been characterized for its rheology and thermal stability using sweep tests, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The ABS and PLA cylindrical parts have been prepared using fused deposition modeling (FDM) and finished using AFM. The experiments were designed using Taguchi (L9 OA) method. The effect of process parameters such as extrusion pressure (EP), layer thickness (LT) and abrasive concentration (AC) was investigated on the amount of material removed (MR) and percentage improvement in surface roughness (%ΔRa). Findings The developed abrasive media was found to be effective for finishing FDM printed parts using AFM. The microscope images of unfinished and finished showed a significant improvement in surface topography of additively manufactures parts after AFM. The results reveal that AC is the most significant parameter during the finishing of ABS parts. However, EP and AC are the most significant parameters for MR and %ΔRa, respectively, during the finishing of PLA parts. Practical implications The FDM technology has applications in the biomedical, electronics, aeronautics and defense sectors. PLA has good biodegradable and biocompatible properties, so widely used in biomedical applications. The ventilator splitters fabricated using FDM have a profile similar to the shape used in the present study. Research limitations/implications The present study is focused on finishing FDM printed cylindrical parts using AFM. Future research may be done on the AFM of complex shapes and freeform surfaces printed using different additive manufacturing (AM) techniques. Originality/value An abrasive media consists of xanthan gum, locust bean gum and fumed silica has been developed and characterized. An experimental study has been performed by combining printing parameters of FDM and finishing parameters of AFM. A comparative analysis in MR and %ΔRa has been reported between 3D printed ABS and PLA parts.


2019 ◽  
Vol 805 ◽  
pp. 3-7
Author(s):  
Manus Sriswat ◽  
Kittipong Kimapong ◽  
Atthakorn Chanchana

Grinding process is necessary final process of making cylindrical parts with less than Ra 0.4 surface roughness. Generally we cannot obtain good surface quality without grinding process. As the experience of the authors, using CBN (Cubic Boron Nitride) insert to turning cylindrical parts could be obtained Ra 0.438 surface roughness. The surface roughness result is similar to ground parts. This result becomes the main focus of the study. Authors study to find out factors affecting CBN performance in turning with CBN to obtain less than Ra 0.4 surface roughness. According to the study, it was found that tool contact area allied to surface roughness. The experiment is turning S45C medium carbon steel under the following condition: Cutting speed is 300 m./min, Feed is 0.05 mm./rev and depth of cut is 0.1 mm. Experiment under the same condition in different contact area. Modify contact area of CBN insert to be 5,10,15,20 and 25 mm. and testing in order. CBN insert standard type contact area is 0 mm. Compare test results of modified CBN inserts with standard type result. The results of experiments were as follows: 1) Turning steel with CBN contact area 10 mm. was obtained Ra 0.456 surface roughness, 2) Turning steel with CBN contact area 15 mm. was obtained Ra 0.293 surface roughness, Thus less than Ra 0.4 surface roughness.


Author(s):  
Emmanuelle R. Biglete ◽  
Mark Christian E. Manuel ◽  
Jennifer C. Dela Cruz ◽  
Marvin S. Verdadero ◽  
John Michael B. Diesta ◽  
...  

2013 ◽  
Vol 860-863 ◽  
pp. 894-898
Author(s):  
Chao Tang ◽  
Sheng Li Dai ◽  
Jiao Li

In order to analyze the ageing mechanism of oil-paper, the Atomic Force Microscope (AFM), which is one of the important instruments in nanometer area, was used in this paper for the analysis of the micro surface morphology, and a 3-D surface roughness analysis on the AFM image was presented. The AFM figures indicates that the molecular arrangement of the initial cellulose paper is close and ordered, some of the hexagonal mesh structures of the D-glucopyranose units were broken down after 100 days accelerated thermal ageing. The roughness analysis indicates that he fiber surface roughness parameter Sa increases with the deepening of ageing degree. Special attention should be paid on the increase in the surface roughness of insulation paper, as it will aggravate the oil streaming electrification when the paper is applied to the power transformers.


2010 ◽  
Vol 40 (5) ◽  
pp. 294 ◽  
Author(s):  
Ki-Ho Park ◽  
Hyun-Joo Yoon ◽  
Su-Jung Kim ◽  
Gi-Ja Lee ◽  
Hun-Kuk Park ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 153-161 ◽  
Author(s):  
Subhasish Sarkar ◽  
Arghya Mukherjee ◽  
Rishav Kumar Baranwal ◽  
Jhumpa De ◽  
Chanchal Biswas ◽  
...  

AbstractThe current study focuses on the parametric optimization of electroless Ni-Co-P coating considering surface roughness as a response using Box-Behnken Design (BBD) of experiment. The two bath parameters namely the concentration of cobalt sulphate and sodium hypophosphite were varied along with the bath temperature to predict the variation in surface roughness. Analysis of variance (ANOVA) method has been applied to determine the interactions of the substantial factors which dominate the surface roughness of the coating. The process parameters for surface roughness of the coating were optimized by successfully utilizing the statistical model of Box-Behnken Design (BBD) of experiment. From the BBD model, the optimum condition for the deposition of the coating has been evaluated. In that specific condition, the surface roughness of the as-deposited coating is found to be 0.913μm. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and X-Ray Diffraction (XRD) study have been utilized to characterize the electroless Ni-Co-P coating deposited in optimized condition.


Sign in / Sign up

Export Citation Format

Share Document