Mathematical model for calculation of the fatigue strength of weld joints and structural steel base material for one-step loading. Plane stress conditionKliemand, W. Schweisstechnik (Berlin) 1990 40, (1), 6–8 (in German)

1991 ◽  
Vol 13 (1) ◽  
pp. 89-89
2007 ◽  
Vol 124-126 ◽  
pp. 1329-1332 ◽  
Author(s):  
Chin Hyung Lee ◽  
Gab Chul Jang ◽  
Hyun Chan Park ◽  
Kyong Ho Chang

During repair welding of steel bridge under service load, vibration occurs due to the dynamic loads like wind and vehicles, etc. However, the effect of vibration during welding on the fatigue strength of weldments is not yet clearly understood. In this paper, the effect of vibration during welding on the fatigue strength of structural steel weldments was investigated in order to improve reliability in the repair welded joints of steel bridge. The base material used in this investigation was SM 490A steel of weldable grade. Flux Cored Arc Welding (FCAW) process was used to fabricate the single ‘V’ butt joints. Welding was performed on the steel under the mechanical vibration of given frequency. The applied frequency was resonant frequency. Also, weldments under no vibration during welding were prepared. Fatigue tests were conducted using a servo hydraulic controlled 50tonf capacity UTM with a frequency of 5Hz under constant amplitude loading. Effect of vibration during welding on the fatigue strength of weldments was analyzed in detail.


2021 ◽  
Vol 11 (9) ◽  
pp. 4130
Author(s):  
Oleksij Fomin ◽  
Alyona Lovska ◽  
Václav Píštěk ◽  
Pavel Kučera

The study deals with determination of the vertical load on the carrying structure of a flat wagon on the 18–100 and Y25 bogies using mathematic modelling. The study was made for an empty wagon passing over a joint irregularity. The authors calculated the carrying structure of a flat wagon with the designed parameters and the actual features recorded during field tests. The mathematical model was solved in MathCad software. The study found that application of the Y25 bogie for a flat wagon with the designed parameters can decrease the dynamic load by 41.1% in comparison to that with the 18–100 bogie. Therefore, application of the Y25 bogie under a flat wagon with the actual parameters allows decreasing the dynamic loading by 41.4% in comparison to that with the 18–100 bogie. The study also looks at the service life of the supporting structure of a flat wagon with the Y25 bogie, which can be more than twice as long as the 18–100 bogie. The research can be of interest for specialists concerned with improvements in the dynamic characteristics and the fatigue strength of freight cars, safe rail operation, freight security, and the results of the research can be used for development of innovative wagon structures.


1999 ◽  
Vol 13 (5) ◽  
pp. 385-391
Author(s):  
Y Kobayashi ◽  
Y Tanaka ◽  
H Goto ◽  
K Matsuoka ◽  
Y Motohashi

1954 ◽  
Vol 21 (2) ◽  
pp. 147-150
Author(s):  
J. N. Goodier ◽  
C. S. Hsu

Abstract When a bar or strip is lap-jointed to a plate, and transmits tension to it, the transmission is not effected only by a smooth distribution of force along the lap joint; there is also a highly concentrated force, a considerable fraction of the total tension, where the bar meets the plate, and a second force at the end of the bar. These forces are investigated by strain-gage measurements for various lengths of lap, and by a plane-stress calculation, with fair agreement. The results suggest that the fatigue strength of such joints will depend on the detailed local character of the joint where the bar meets the plate, rather than on the length of the joint.


Author(s):  
Gennadiy Kryzhevich ◽  
Anatoliy Filatov

This paper studies marine structures made of steels and light alloys and exposed to cyclic operational loads. Stress-strain parameters of their joints were taken from mathematical simulations of loads and strains or from actual strain gauging data. The aim of this study is to develop recommendations on fatigue strength calculations: specifically, how to quite the complex mathematical model of multi-axial loading at critical structural points with fast fatigue wear in favour of a simplified stressstrain state description based on optimal assignment of design parameters (stresses) in fatigue failure criteria. Preferability of this approach depends on case-specific requirements to calculation accuracy and timeframes. Uniaxial description of stressed state instead of the three-axial one enables much faster calculation with acceptable drop in accuracy.


2015 ◽  
Vol 15 (3) ◽  
pp. 33-40
Author(s):  
T. Lipiński ◽  
A. Wach ◽  
E. Detyna

Abstract The article discusses the effect of large oxide impurities (a diameter larger than 10 μm in size) on the fatigue resistance of structural steel of high purity during rotary bending. The study was performed on 7 heats produced in an industrial plant. The heats were produced in 140 ton electric furnaces. All heats were desulfurized. The experimental material consisted of semi-finished products of high-grade, carbon structural steel with: manganese, chromium, nickel, molybdenum and boron. Steel sections with a diameter of 18 mm were hardened from austenitizing by 30 minutes in temperature 880°C and tempered at a temperature of 200, 300, 400, 500 and 600°C for 120 minutes and air-cooled. The experimental variants were compared in view of the heat treatment options. Fatigue tests were performed with the use of a rotary bending machine at a frequency of 6000 cpm. The results were statistical processed and presented in graphic form. This paper discusses the results of the relative volume of large impurities, the fatigue strength for various heat processing options.


2019 ◽  
Vol 37 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Yasushi MORIKAGE ◽  
Tsunehisa HANDA ◽  
Tetsuya TAGAWA ◽  
Rinsei IKEDA

2017 ◽  
Vol 751 ◽  
pp. 494-499
Author(s):  
Vituruch Goodwin ◽  
Phanwatsa Amnaphiang ◽  
Pimpreeya Thungngern ◽  
Kong Kah Shin ◽  
Parncheewa Udomsap ◽  
...  

Two transition metals were loaded on H-ZSM-5 zeolite to produce bimetallic zeolite supported catalysts for catalytic pyrolysis reaction. Ni and Co metal were loaded on H-ZSM-5 via wet impregnation method. The loading sequence was applied using one-step and two-step loading method. The different loading sequence affect surface properties of catalyst and catalytic activity in pyrolysis reaction. The bimetallic catalysts were prepared at Ni+Co metal loading content of 10+10 wt% (Ni:Co=1:1) to 10+20 wt% (Ni:Co=1:2 or 2:1). All bimetallic catalysts supported on H-ZSM-5 were calcined and characterized by X-ray Diffraction (XRD), Surface area analysis (BET) and Temperature Programmed Desorption of ammonia (NH3-TPD). The XRD patterns of bimetallic zeolite supported catalysts revealed that loading of two metals at high content affect crystalline structural of ZSM-5 support. All XRD patterns illustrated peaks characteristic of ZSM-5, cobalt oxide and nickel oxide. The NH3-TPD results showed number of acid sites of the catalyst which revealed that the acid sites of ZSM-5 support was weakened with transition metal added. The two-step loading of 10+20 wt% metals on ZSM-5 reduced the peak intensities of NH3 desorption due to the metal particles aggregate on acid sites of ZSM-5. The two-step 10+20 wt% bimetallic catalysts has the lowest surface acidity, followed by the one-step 10+20 wt%, the two-step 10+10 wt% and the one-step 10+10 wt% bimetallic catalysts, respectively. Jatropha residue was used for catalytic pyrolysis study. Jatropha residue and bimetallic catalyst was pyrolyzed at 500 °C in a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The product vapor was analyzed by GC/MS for the different groups of organic products such as fatty acid, aldehydes, ketones, aliphatic hydrocarbons, aromatic hydrocarbons and nitrogen compounds. The product from catalytic pyrolysis of jatropha residue with bimetallic zeolite supported catalysts enhance deoxygenation reaction that resulted in high aliphatic and aromatic hydrocarbons product. The one-step loading at ratio Ni:Co = 1:1 (10+10 wt%) gave the highest hydrocarbons product yield at 57.81%.


Sign in / Sign up

Export Citation Format

Share Document