Effects of different ion-implanted dopant species on the solid-phase epitaxy of LiNbO3 optical waveguides

Author(s):  
D.B. Poker ◽  
D.K. Thomas
1988 ◽  
Vol 100 ◽  
Author(s):  
D. B. Poker ◽  
D. K. Thomas

ABSTRACTIon implantation of Ti into LINbO3 has been shown to be an effective means of producing optical waveguides, while maintaining better control over the resulting concentration profile of the dopant than can be achieved by in-diffusion. While undoped, amorphous LiNbO3 can be regrown by solid-phase epitaxy at 400°C with a regrowth velocity of 250 Å/min, the higher concentrations of Ti required to form a waveguide (∼10%) slow the regrowth considerably, so that temperatures approaching 800°C are used. Complete removal of residual damage requires annealing temperatures of 1000°C, not significantly lower than those used with in-diffusion. Solid phase epitaxy of Agimplanted LiNbO3, however, occurs at much lower temperatures. The regrowth is completed at 400°C, and annealing of all residual damage occurs at or below 800°C. Furthermore, the regrowth rate is independent of Ag concentration up to the highest dose implanted to date, 1 × 1017 Ag/cm2. The usefulness of Ag implantation for the formation of optical waveguides is limited, however, by the higher mobility of Ag at the annealing temperature, compared to Ti.


1984 ◽  
Vol 35 ◽  
Author(s):  
G.L. Olson ◽  
J.A. Roth ◽  
Y. Rytz-Froidevaux ◽  
J. Narayan

ABSTRACTThe temperature dependent competition between solid phase epitaxy and random crystallization in ion-implanted (As+, B+, F+, and BF2+) silicon films is investigated. Measurements of time-resolved reflectivity during cw laser heating show that in the As+, F+, and BF2+-implanted layers (conc 4×1020cm-3) epitaxial growth is disrupted at temperatures 1000°C. This effect is not observed in intrinsic films or in the B+-implanted layers. Correlation with results of microstructural analyses and computer simulation of the reflectivity experiment indicates that disruption of epitaxy is caused by enhancement of the random crystallization rate by arsenic and fluorine. Kinetics parameters for the enhanced crystallization process are determined; results are interpreted in terms of impurity-catalyzed nucleation during the random crystallization process.


1986 ◽  
Vol 88 ◽  
Author(s):  
Ch. Buchal ◽  
P. R. Ashley ◽  
D. K. Thomas ◽  
B. R. Appleton

ABSTRACTLiNbO3 is the best substrate for modulators and switches for integrated optics. Efficient low loss waveguides for light in LiNbO3 are formed by introducing Ti-ions into its lattice, thus increasing locally the ordinary and the extraordinary indices of refraction. We are the first to use the very versatile technique of ion-implantation to administer Ti into LiNbO3. This implantation process offers the possibility to introduce significantly more Ti into a well-defined volume than conventional diffusion techniques. During this process first an amorphous non-equilibrium phase is generated, which has to be kept at low temperatures in order to prevent segregation. Subsequent thermal treatment leads to solid phase epitaxy and restores the desired stable crystalline state. We have used this technique to fabricate excellent planar waveguides, channel waveguides and Mach-Zehnder modulators.


1997 ◽  
Vol 493 ◽  
Author(s):  
Keiichi Nashimoto ◽  
Shigetoshi Nakamura ◽  
Hiroaki Moriyama ◽  
Masao Watanabe ◽  
Eisuke Osakabe

ABSTRACTHigh quality epitaxial PZT optical waveguides have been grown by solid-phase epitaxy based on metal alkoxide solution process. Optical propagation loss was 4 dB/cm in epitaxial PZT thin film optical waveguides grown on SrTiO3 substrates. Epitaxial PZT optical waveguides were grown on Nb doped conductive SrTiO3 substrates, since considerable reduction in drive voltage will be expected when top electrode / optical waveguide / conductive substrate structures are realized. Propagation loss was relatively large, as compared with the structure using non-dope insulative substrates. Preliminary electrooptic deflection devices were fabricated by preparing prism electrodes on the surface of the PZT optical waveguides. Efficient deflection/switching of coupled laser beam in the PZT optical waveguides as large as 26 mrad was observed by applying 70 volts between prism electrode and Nb doped SrTiO3 substrates.


1989 ◽  
Vol 4 (2) ◽  
pp. 412-416 ◽  
Author(s):  
D. B. Poker ◽  
D. K. Thomas

The solid-phase epitaxy of LiNbO3 following ion implantation of Ti dopant for the purpose of producing optical waveguides has been studied. Implanting 360-keV Ti at liquid nitrogen temperature produces a highly damaged region extending to a depth of about 400 nm. This essentially amorphous region can be recrystallized epitaxially by annealing in a water-saturated oxygen atmosphere at temperatures near 400 °C. though complete removal of all irradiation-induced damage requires temperatures in excess of 600 °C. The activation energy of the regrowth is 2.0 eV for implanted fluences below 3 ⊠ 1016 Ti/cm2. At higher fluences the regrowth proceeds more slowly, and Ti dopant segregates at the regrowth interface. Complete recrystallization following high-dose implantation requires annealing temperatures in excess of 800 °C.


2007 ◽  
Vol 54 (2) ◽  
pp. 262-271 ◽  
Author(s):  
Kunihiro Suzuki ◽  
Yuji Kataoka ◽  
Susumu Nagayama ◽  
Charles W. Magee ◽  
Temel H. Buyuklimanli ◽  
...  

1987 ◽  
Vol 26 (Part 1, No. 1) ◽  
pp. 117-121 ◽  
Author(s):  
Tsuyoshi Fukada ◽  
Tanemasa Asano ◽  
Seijiro Frukawa ◽  
Hiroshi Ishiwara

Author(s):  
Manabu Ishimaru ◽  
Shinsuke Harada ◽  
Teruaki Motooka ◽  
Toshitake Nakata ◽  
Tomoaki Yoneda ◽  
...  

1980 ◽  
Vol 1 ◽  
Author(s):  
J.A. Roth ◽  
G.L. Olson ◽  
S.A. Kokorowski ◽  
L.D. Hess

ABSTRACTA comparative study of solid phase epitaxy (SPE) of deposited and ion-implanted amorphous Si films was conducted with the use of a newly developed laser technique. The effects of interface contaminants and contaminants distributed within a deposited film on the rate of SPE and final crystal quality are reported. In the absence of impurities, deposited Si films crystallize at the same rate as ion-implanted layers and yield epitaxial films with comparable crystal quality. The presence of impurities in deposited films at the interface or distributed within the film can severely retard the SPE growth, causing several deleterious effects which ultimately degrade the film quality. These effects are more severe at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document