Mesoscale convection from a large-scale perspective

1995 ◽  
Vol 35 (2-4) ◽  
pp. 87-112 ◽  
Author(s):  
M.W. Moncrieff
2011 ◽  
Vol 2011 ◽  
pp. 1-34 ◽  
Author(s):  
Masanori Yamasaki

This paper describes results from numerical experiments which have been performed as the author's first step toward a better understanding of the Madden-Julian oscillation (MJO). This study uses the author's mesoscale-convection-resolving model that was developed in the 1980s to improve parametrization schemes of moist convection. Results from numerical experiments by changing the SST anomaly in the warm pool area indicate that the period of the MJO does not monotonously change with increasing SST anomaly. Between the two extreme cases (no anomaly and strong anomaly), there is a regime in which the period varies in a wide range from 20 to 60 days. In the case of no warm pool, eastward-propagating Kelvin waves are dominant, whereas in the case of a strong warm pool, it produces a quasi-stationary convective system (with pronounced time variation). In a certain regime between the two extreme cases, convective activities with two different properties are strongly interacted, and the period of oscillations becomes complicated. The properties and behaviors of large-scale convective system (LCS), synoptic-scale convective system (SCS), mesoscale convective system (MCS), and mesoscale convection (MC), which constitute the hierarchical structure of the MJO, are also examined. It is also shown that cloud clusters, which constitute the SCS (such as super cloud cluster SCC), consist of a few MCS, and a new MCS forms to the west of the existing MCS. The northwesterly and southwesterly low-level flows contribute to this feature. In view of recent emphasis of the importance of the relative humidity above the boundary layer, it is shown that the model can simulate convective processes that moisten the atmosphere, and the importance of latent instability (positive CAPE), which is a necessary condition for the wave-CISK, is emphasized.


2018 ◽  
Vol 146 (6) ◽  
pp. 1945-1961 ◽  
Author(s):  
Ademe Mekonnen ◽  
William B. Rossow

Recent work using observational data from the International Satellite Cloud Climatology Project (ISCCP) and reanalysis products suggests that African easterly waves (AEWs) form in association with a “transition” process from smaller and scattered convection into larger and organized mesoscale convective activity. However, the transition process is unclear and how mesoscale convection initiates AEWs is not well understood. Analysis based on 25 years of ISCCP and reanalysis datasets show that increasing intradiurnal activity, atmospheric instability, and specific humidity precede the development of well-organized convection over the Ethiopian highlands. Atmospheric instability favors a high frequency of scattered, isolated convection to the east of the Ethiopian highlands, first, followed by a continuing and large increase in instability and increasing humidity, which supports well-organized larger-scale convection. The timing of the changes of thermodynamic variables shows that the dominant transition process is scattered, with weakly organized convection transitioning into the well-organized mesoscale convection, and this initiates the AEWs. Slightly before the mesoscale convection peaks over the Ethiopian highlands, low-level moist westerlies, low- to midlevel wind shear, and positive relative vorticity increase over the region. Evidence shows that the large-scale and local environment enables the scattered and less well-organized convection to merge and form larger and well-organized convection. The dynamic processes suggest that the dominant pathway for AEW initiation is scattered convection transitioning to large and well-organized convection over the Ethiopian highlands and this initiates AEWs westward of the Ethiopian highlands.


2006 ◽  
Vol 42 (1-4) ◽  
pp. 3-29 ◽  
Author(s):  
Brian Mapes ◽  
Stefan Tulich ◽  
Jialin Lin ◽  
Paquita Zuidema

1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.


Sign in / Sign up

Export Citation Format

Share Document