A novel sample preparation technique for cross-sectional tem investigation of integrated circuits

1983 ◽  
Vol 11 (4) ◽  
pp. 303-305 ◽  
Author(s):  
J. Vanhellemont ◽  
H. Bender ◽  
C. Claeys ◽  
J. Van Landuyt ◽  
G. Declerck ◽  
...  
1990 ◽  
Vol 199 ◽  
Author(s):  
Guang-Hwa M. Ma ◽  
Sopa Chevacharoenkul

ABSTRACTA modified “two-in-one” cross-sectional TEM sample preparation technique is described. By coating a thin layer of “marker” to distinguish one sample from the other, two samples could be simultaneously prepared in one TEM cross-sectional specimen. Therefore, the specimen preparation time is reduced by nearly one half. The coating can be done in an existing ion-mill. Criteria for choosing a suitable marker as well as tips on getting good quality specimens are described. An example of applying this technique to a processing-microstructure study of an ultra-shallow junction formation in silicon is demonstrated.


Author(s):  
Hoon Ye Gwee ◽  
Kiong Kay Ng

Abstract Parallel lapping (often called delayering) is a commonly used process in failure analysis of integrated circuits. However, parallel lapping commonly gives rise to the issue of weak sample preparation method especially on specimen mounting. The traditional specimen mounting technique was done by mounted a single die to polishing fixture using drop of super glue. Using conventional methods, problems such as losing the die during polishing, serious edge rounding are often encountered. Further, loading the whole polishing fixture into Scanning Electron Microscopy machine for SEM imaging or Passive Voltage Contrast (PVC) fault localization can be complicated due to the size of polishing fixture. Therefore, an alternative, relatively fast and simple method to overcome the above mentioned obstacles is proposed.


2014 ◽  
Vol 20 (6) ◽  
pp. 1646-1653
Author(s):  
Claire V. Weiss Brennan ◽  
Scott D. Walck ◽  
Jeffrey J. Swab

AbstractA new technique for the preparation of heavily cracked, heavily damaged, brittle materials for examination in a transmission electron microscope (TEM) is described in detail. In this study, cross-sectional TEM samples were prepared from indented silicon carbide (SiC) bulk ceramics, although this technique could also be applied to other brittle and/or multiphase materials. During TEM sample preparation, milling-induced damage must be minimized, since in studying deformation mechanisms, it would be difficult to distinguish deformation-induced cracking from cracking occurring due to the sample preparation. The samples were prepared using a site-specific, two-step ion milling sequence accompanied by epoxy vacuum infiltration into the cracks. This technique allows the heavily cracked, brittle ceramic material to stay intact during sample preparation and also helps preserve the true microstructure of the cracked area underneath the indent. Some preliminary TEM results are given and discussed in regards to deformation studies in ceramic materials. This sample preparation technique could be applied to other cracked and/or heavily damaged materials, including geological materials, archaeological materials, fatigued materials, and corrosion samples.


1998 ◽  
Author(s):  
S. Subramanian ◽  
P. Schani ◽  
E. Widener ◽  
P. Liston ◽  
J. Moss ◽  
...  

Abstract A selected area planar TEM (SAPTEM) sample preparation technique for failure analysis of integrated circuits using a transmission electron microscope has been developed. The technique employs a combination of mechanical grinding, selective wet/dry chemical etching (if required) and a two step focused ion beam IIFIB) milling. The mechanical grinding steps include: (a) a backside grind to achieve a die thickness less than 30 µm, (b) the support half ring glue, and (c) a cross-section grind from one side to reach less than 35 pm to the failing site. A selective wet or dry chemical etch is applied before, between,, or after FIB thinning depending on the nature of problem and device components. The FIB milling steps involve: (is) a high ion current cross-sectional cut to reach as close as 5-8 µm to the area of interest (b) a final planar thinning with the ion beam parallel to the surface of the die. The plan view procedure offers unique geometric advantage over the cross-section method for failure analysis of problems that are limited to silicon or certain layers of the device. Iln the cross-sectional approach, a thin section (thickness less than 250 µm) of a device is available for failure analysis, whereas in the planar procedure a 20 µm2 area of any layer (thickness less than 250 µm) of the device is available. The above advantage has been successfully exploited to identify and solve the following prablems in fast static random access memories (FSRAM): (i) random gateoxide rupture that resulted in single bit failures, (ii) random dislocations from the buried contact trenching that caused single bit failures and general silicon defectivity (e.g. implant damage and spacer edge defects), and (iii) interracial reactions.


1995 ◽  
Vol 399 ◽  
Author(s):  
Y.-C. Kim ◽  
M. J. Nowakowski ◽  
D. N. Seidman

ABSTRACTA novel in situ sample cleavage technique has been developed for fabricating specimens for cross-sectional scanning tunneling microscopy (XSTM) applications. This technique can be easily adapted to any ultrahigh vacuum (UHV) STM that has a coarse motion capability. A conducting diamond STM tip is used to create micron long scratches on Ge/GaAs or GaAs {001 }-type surfaces. These {001} surfaces are imaged with STM to observe scratch characteristics, and GaAs samples are cleaved to reveal {110}-type faces. Atomic resolution images of {110}-type GaAs surfaces are readily and reproducibly obtained.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
Pamela F. Lloyd ◽  
Scott D. Walck

Pulsed laser deposition (PLD) is a novel technique for the deposition of tribological thin films. MoS2 is the archetypical solid lubricant material for aerospace applications. It provides a low coefficient of friction from cryogenic temperatures to about 350°C and can be used in ultra high vacuum environments. The TEM is ideally suited for studying the microstructural and tribo-chemical changes that occur during wear. The normal cross sectional TEM sample preparation method does not work well because the material’s lubricity causes the sandwich to separate. Walck et al. deposited MoS2 through a mesh mask which gave suitable results for as-deposited films, but the discontinuous nature of the film is unsuitable for wear-testing. To investigate wear-tested, room temperature (RT) PLD MoS2 films, the sample preparation technique of Heuer and Howitt was adapted.Two 300 run thick films were deposited on single crystal NaCl substrates. One was wear-tested on a ball-on-disk tribometer using a 30 gm load at 150 rpm for one minute, and subsequently coated with a heavy layer of evaporated gold.


Author(s):  
Pradip Sairam Pichumani ◽  
Fauzia Khatkhatay

Abstract Silicon photonics is a disruptive technology that aims for monolithic integration of photonic devices onto the complementary metal-oxide-semiconductor (CMOS) technology platform to enable low-cost high-volume manufacturing. Since the technology is still in the research and development phase, failure analysis plays an important role in determining the root cause of failures seen in test vehicle silicon photonics modules. The fragile nature of the test vehicle modules warrants the development of new sample preparation methods to facilitate subsequent non-destructive and destructive analysis methods. This work provides an example of a single step sample preparation technique that will reduce the turnaround time while simultaneously increasing the scope of analysis techniques.


Sign in / Sign up

Export Citation Format

Share Document