Tumour-localizing properties of porphyrins in vivo studies using free and liposome encapsulated aminolevulinic acid

Author(s):  
Haydée Fukuda ◽  
Sergio Paredes ◽  
Alcira M. del C. Battle
2019 ◽  
Vol 8 (2) ◽  
pp. 31-46
Author(s):  
D. A. Tzerkovsky ◽  
E. L. Protopovich ◽  
D. S. Stupak

In the present publication, authors have analyzed the results of using sonodynamic and sono-photodynamic therapy with photosensitizing agents of various classes (hematoporphyrin, 5-aminolevulinic acid, chlorin derivatives, etc.) in experimental oncology. In a number of in vitro and in vivo studies, the high antitumor efficacy of the above treatment methods has been proven. Ultrasonic treatment with a pulse frequency of 1–3 MHz and an intensity of 0.7 to 5 W/cm2 , independently and in combination with photo-irradiation of experimental tumors, can significantly improve the cytotoxic properties of photosensitizers. This became the basisfor testing the methodsin patients with malignant neoplasms of various localizations. Scientists fromSouth-East Asia presented the preliminary results of the use of sonodynamic and sono-photodynamic therapy with photosensitizers in the treatment of malignant pathology of the mammary gland, stomach, esophagus, prostate, lung and brain. Analysis of the obtained data indicates the absence of serious adverse events and an increase in the antitumor efficacy of treatment, which included these treatment methods with chlorin-type photosensitizers. 


2021 ◽  
Vol 14 (10) ◽  
pp. 972
Author(s):  
Federica Foglietta ◽  
Giulia Gola ◽  
Elena Biasibetti ◽  
Maria Teresa Capucchio ◽  
Iside Bruni ◽  
...  

Sonodynamic therapy is a bimodal therapeutic approach in which a chemical compound and ultrasound (US) synergistically act to elicit oxidative damage, triggering cancer cell death. Despite encouraging results, mainly for anticancer treatment, sonodynamics is still far from having a clinical application. Therefore, to close the gap between the bench and bedside, more in vivo studies are needed. In this investigation, the combined effect of 5-aminolevulinic acid (Ala), a natural porphyrin precursor, plus exposure to US, was investigated in vivo on a syngeneic breast cancer model. Real-time RT-PCR, Western blotting, and immunohistochemistry assays were performed to evaluate the effect of sonodynamic treatment on the main cancer hallmarks. The sonodynamic-treated group had a significant reduction (p ≤ 0.0001) in tumor size compared to the untreated group, and the Ala- and US-only treated groups, where a strong decrease (p ≤ 0.0001) in Ki67 protein expression was the most relevant feature of sonodynamic-treated cancer tissues. Moreover, oxidative stress was confirmed as the pivotal driver of the anticancer effect through cell cycle arrest, apoptosis, and autophagy; thus, sonodynamics should be explored further for cancer treatment.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


1994 ◽  
Vol 72 (05) ◽  
pp. 659-662 ◽  
Author(s):  
S Bellucci ◽  
W Kedra ◽  
H Groussin ◽  
N Jaillet ◽  
P Molho-Sabatier ◽  
...  

SummaryA double-blind, placebo-controlled randomized study with BAY U3405, a specific thromboxane A2 (TX A2) receptor blocker, was performed in patients suffering from severe stade II limb arteriopathy. BAY U3405 or placebo was administered in 16 patients at 20 mg four times a day (from day 1 to day 3). Hemostatic studies were done before therapy, and on day 2 and day 3 under therapy. On day 3, BAY U3405 was shown to induce a highly statistically significant decrease of the velocity and the intensity of the aggregations mediated by arachidonic acid (56 ± 37% for the velocity, 58 ± 26% for the intensity) or by U46619 endoperoxide analogue (36 ± 35% for the velocity, 37 ± 27% for the intensity). Similar results were already observed on day 2. By contrast, such a decrease was not noticed with ADP mediated platelet aggregation. Furthermore, plasma levels of betathrombo-globulin and platelet factor 4 remained unchanged. Peripheral hemodynamic parameters were also studied. The peripheral blood flow was measured using a Doppler ultrasound; the pain free walking distance and the total walking ability distance were determined under standardized conditions on a treadmill. These last two parameters show a trend to improvement which nevertheless was not statistically significant. All together these results encourage further in vivo studies using BAY U3405 or related compounds on a long-term administration.


1996 ◽  
Vol 76 (04) ◽  
pp. 549-555 ◽  
Author(s):  
Walter A Wuillemin ◽  
C Erik Hack ◽  
Wim K Bleeker ◽  
Bart J Biemond ◽  
Marcel Levi ◽  
...  

SummaryC1-inhibitor (C1Inh), antithrombin III (ATIII), α1-antitrypsin (a1AT), and α2-antiplasmin (a2AP) are known inhibitors of factor XIa (FXIa). However, their precise contribution to FXIa inactivation in vivo is not known. We investigated FXIa inactivation in chimpanzees and assessed the contribution of these inhibitors to FXIa inactivation in patients with presumed FXI activation.Chimpanzees were infused with FXIa and the various FXIa-FXIa inhibitor complexes formed were measured. Most of FXIa was complexed to C1Inh (68%), followed by a2AP (13%), a1AT (10%), and ATIII (9%). Analysis of the plasma elimination kinetics revealed a half-life time of clearance (t1/2) for the FXIa-FXIa inhibitor complexes of 95 to 104 min, except for FXIa-a1AT, which had a t1/2 of 349 min. Due to this long t1/2, FXIa-a1AT complexes were predicted to show the highest levels in plasma samples from patients with activation of FXI. This was indeed shown in patients with disseminated intravascular coagulation, recent myocardial infarction or unstable angina pectoris. We conclude from this study that in vivo C1Inh is the predominant inhibitor of FXIa, but that FXIa-a1 AT complexes due to their relatively long t1/2 may be the best parameter to assess FXI activation in clinical samples.


Sign in / Sign up

Export Citation Format

Share Document