Disease family trees: The possible roles of iodine in goitre, cretinism, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases and cancers of the thyroid, nervous system and skin

1987 ◽  
Vol 24 (3) ◽  
pp. 249-263 ◽  
Author(s):  
Harold D Foster
2021 ◽  
Vol 22 (8) ◽  
pp. 4128
Author(s):  
Yiyun Jin ◽  
Devkee Mahesh Vadukul ◽  
Dimitra Gialama ◽  
Ying Ge ◽  
Rebecca Thrush ◽  
...  

Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.


2021 ◽  
Vol 14 (1) ◽  
pp. 70
Author(s):  
Victoria Gröger ◽  
Alexander Emmer ◽  
Martin Staege ◽  
Holger Cynis

Human endogenous retroviruses (HERV) have been implicated in the pathogenesis of several nervous system disorders including multiple sclerosis and amyotrophic lateral sclerosis. The toxicity of HERV-derived RNAs and proteins for neuronal cells has been demonstrated. The involvement of HERV in the pathogenesis of currently incurable diseases might offer new treatment strategies based on the inhibition of HERV activities by small molecules or therapeutic antibodies.


2013 ◽  
Vol 71 (10) ◽  
pp. 815-817 ◽  
Author(s):  
Marleide da Mota Gomes ◽  
Eliasz Engelhardt

Jean-Martin Charcot was a pioneer in a variety of subjects, including nervous system diseases; anatomy; physiology; pathology; and diseases of ageing, joints, and lungs. His medical achievements were mainly based on his anatomopathological proficiency, his observation, and his personal thoroughness that favored the delineation of the nosology of the main neurological diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s disease, peroneal muscular atrophy, and hysteria/epilepsy. The link of this anatomoclinical method with iconographic representations and theatrical lessons, and the rich bibliographical documentations, carried out in a crowded diseased people barn - Salpetrière hospital were the basis of his achievements, which are still discussed 120 years after his death.


2020 ◽  
Vol 25 (43) ◽  
pp. 4560-4569 ◽  
Author(s):  
Yichen Lee ◽  
Bo H. Lee ◽  
William Yip ◽  
Pingchen Chou ◽  
Bak-Sau Yip

Neurofilaments: light, medium, and heavy (abbreviated as NF-L, NF-M, and NF-H, respectively), which belong to Type IV intermediate filament family (IF), are neuron-specific cytoskeletal components. Neurofilaments are axonal structural components and integral components of synapses, which are important for neuronal electric signal transmissions along the axons and post-translational modification. Abnormal assembly of neurofilaments is found in several human neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy (SMA), and hereditary sensory-motor neuropathy (HSMN). In addition, those pathological neurofilament accumulations are known in α-synuclein in Parkinson’s disease (PD), Aβ and tau in Alzheimer’s disease (AD), polyglutamine in CAG trinucleotide repeat disorders, superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP43), neuronal FUS proteins, optineurin (OPTN), ubiquilin 2 (UBQLN2), and dipeptide repeat protein (DRP) in amyotrophic lateral sclerosis (ALS). When axon damage occurs in central nervous disorders, neurofilament proteins are released and delivered into cerebrospinal fluid (CSF), which are then circulated into blood. New quantitative analyses and assay techniques are well-developed for the detection of neurofilament proteins, particularly NF-L and the phosphorylated NF-H (pNF-H) in CSF and serum. This review discusses the potential of using peripheral blood NF quantities and evaluating the severity of damage in the nervous system. Intermediate filaments could be promising biomarkers for evaluating disease progression in different nervous system disorders.


Author(s):  
Luis De-Bernardi-Ojuel ◽  
Laura Torres-Collado ◽  
Manuela García-de-la-Hera

This scoping review aims to describe occupational therapy interventions carried out with multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) patients in occupational therapy. A peer review of the literature was conducted in different databases: Pubmed, Scopus, Web of Science and Embase, and in some occupational therapy journals. A search of the literature published was carried out before December 2019. The inclusion criteria were as follows: (1) articles evaluating the intervention of occupational therapy in MS or ALS including experimental, randomized, nonrandomized and exploratory studies; (2) written in English or Spanish; (3) adult population (over 18 years old). The initial search identified 836 articles of which we included 32 divided into four areas of intervention: fatigue-targeted interventions, cognitive interventions, physical interventions and others. Only 16 studies were carried out exclusively by occupational therapists. Most occupational therapy interventions are aimed at fatigue and physical rehabilitation. The majority of the studies in our review included MS patients, with little representation from the ALS population. These interventions have shown an improvement in perceived fatigue, manual dexterity, falls prevention and improvement in cognitive aspects such as memory, communication, depression and quality of life in the MS and ALS populations.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Cadiele Oliana Reichert ◽  
Debora Levy ◽  
Sergio P. Bydlowski

The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and Parkinson’s disease (PD).


2021 ◽  
Vol 429 ◽  
pp. 118159
Author(s):  
Paola Ajdinaj ◽  
Marianna Gabriella Rispoli ◽  
Laura Ferri ◽  
Maria D'Apolito ◽  
Deborah Farina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document