scholarly journals Paraoxonase Role in Human Neurodegenerative Diseases

Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Cadiele Oliana Reichert ◽  
Debora Levy ◽  
Sergio P. Bydlowski

The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and Parkinson’s disease (PD).

2020 ◽  
Vol 9 (4) ◽  
pp. 1223
Author(s):  
Andrea Tarozzi

Oxidative stress plays an important role in the pathogenesis of several different neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) [...]


2021 ◽  
Author(s):  
Elizaveta I. Ustyantseva ◽  
Suren M. Zakian ◽  
Sergey P. Medvedev

ABSTRACTBackgroundOxidative stress plays an important role in the development of neurodegenerative diseases: it either can be the initiator or part of a pathological cascade leading to the neuron’s death. Although a lot of methods are known for oxidative stress study, most of them operate on non-native cellular substrates or interfere with the cell functioning. Genetically encoded (GE) biosensors of oxidative stress demonstrated their general functionality and overall safety in various live systems. However, there is still insufficient data regarding their use for research of disease-related phenotypes in relevant model systems, such as human cells.MethodsWe applied CRISPR/Cas9 genome editing to introduce mutations (c.272A>C and c.382G>C) in the associated with amyotrophic lateral sclerosis SOD1 gene of induced pluripotent stem cells (iPSC) obtained from a healthy individual. Using CRISPR/Cas9, we modified these mutant iPSC lines, as well as the parental iPSC line, and a patient-specific SOD1D91A/D91A iPSC line with ratiometric GE biosensors of cytoplasmic (Cyto-roGFP2-Orp1) and mitochondrial (Mito-roGFP2-Orp1) H2O2. The biosensors sequences along with a specific transactivator for doxycycline-controllable expression were inserted in the “safe harbor” AAVS1 (adeno-associated virus site 1) locus. We differentiated these transgenic iPSCs into motor neurons and investigated the functionality of the biosensors in such a system. We measured relative oxidation in the cultured motor neurons and its dependence on culture conditions, age, and genotype, as well as kinetics of H2O2 elimination in real-time.ResultsWe developed a cell-based platform consisting of isogenic iPSC lines with different genotypes associated with amyotrophic lateral sclerosis. The iPSC lines were modified with GE biosensors of cytoplasmic and mitochondrial H2O2. We provide proof-of-principle data showing that this approach may be suitable for monitoring oxidative stress in cell models of various neurodegenerative diseases as the biosensors reflect the redox state of neurons.ConclusionWe found that the GE biosensors inserted in the AAVS1 locus remain functional in motor neurons and reflect pathological features of mutant motor neurons, although the readout largely depends on the severity of the mutation.


2021 ◽  
Vol 13 ◽  
Author(s):  
Frank W. Pfrieger

Neurodegenerative diseases, namely Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s disease (HD) together with amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), devastate millions of lives per year worldwide and impose an increasing socio-economic burden across nations. Consequently, these diseases occupy a considerable portion of biomedical research aiming to understand mechanisms of neurodegeneration and to develop efficient treatments. A potential culprit is cholesterol serving as an essential component of cellular membranes, as a cofactor of signaling pathways, and as a precursor for oxysterols and hormones. This article uncovers the workforce studying research on neurodegeneration and cholesterol using the TeamTree analysis. This new bibliometric approach reveals the history and dynamics of the teams and exposes key players based on citation-independent metrics. The team-centered view reveals the players on an important field of biomedical research.


2020 ◽  
Vol 21 (9) ◽  
pp. 3299
Author(s):  
Cristina Angeloni ◽  
Martina Gatti ◽  
Cecilia Prata ◽  
Silvana Hrelia ◽  
Tullia Maraldi

Neurodegenerative diseases include a variety of pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer’s and Parkinson’s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorders.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S5) ◽  
pp. 6-10 ◽  
Author(s):  
John E. Duda

AbstractThe syndrome now known as involuntary emotional expression disorder (IEED) is a condition characterized by uncontrollable episodes of laughing and/or crying. It has been known for more than a century, but confusing and conflicting terminology may have hampered the progress of physicians in recognizing this condition. IEED is associated with various neurological disorders and neurodegenerative diseases, including amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease and other dementias, and neurological injuries such as stroke and traumatic brain injury. It is hoped that better defined terminology for IEED may help in the future diagnosis of this debilitating condition, the establishment of accurate prevalence rates for IEED in the varying underlying conditions, and also in removing blame and stigma from sufferers by providing reassurance about the nature of their condition.


2020 ◽  
Vol 18 (10) ◽  
pp. 779-790 ◽  
Author(s):  
Alexandre LeBlanc ◽  
Miroslava Cuperlovic-Culf ◽  
Pier Jr. Morin ◽  
Mohamed Touaibia

Background:: The current therapeutic options available to patients diagnosed with Amyotrophic Lateral Sclerosis (ALS) are limited and edaravone is a compound that has gained significant interest for its therapeutic potential in this condition. Objectives: : The current work was thus undertaken to synthesize and characterize a series of edaravone analogues. Methods: A total of 17 analogues were synthesized and characterized for their antioxidant properties, radical scavenging potential and copper-chelating capabilities. Results: Radical scavenging and copper-chelating properties were notably observed for edaravone. Analogues bearing hydrogen in position 1 and a phenyl at position 3 and a phenyl in both positions of pyrazol-5 (4H)-one displayed substantial radical scavenging, antioxidants and copper-chelating properties. High accessibility of electronegative groups combined with higher electronegativity and partial charge of the carbonyl moiety in edaravone might explain the observed difference in the activity of edaravone relative to the closely related analogues 6 and 7 bearing hydrogen at position 1 and a phenyl at position 3 (6) and a phenyl in both positions (7). Conclusion: Overall, this study reveals a subset of edaravone analogues with interesting properties. Further investigation of these compounds is foreseen in relevant models of oxidative stress-associated diseases in order to assess their therapeutic potential in such conditions.


Author(s):  
Marina Betancor ◽  
Laura Moreno-Martínez ◽  
Óscar López-Pérez ◽  
Alicia Otero ◽  
Adelaida Hernaiz ◽  
...  

AbstractThe non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson’s disease or Alzheimer’s disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.


Author(s):  
Luis De-Bernardi-Ojuel ◽  
Laura Torres-Collado ◽  
Manuela García-de-la-Hera

This scoping review aims to describe occupational therapy interventions carried out with multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) patients in occupational therapy. A peer review of the literature was conducted in different databases: Pubmed, Scopus, Web of Science and Embase, and in some occupational therapy journals. A search of the literature published was carried out before December 2019. The inclusion criteria were as follows: (1) articles evaluating the intervention of occupational therapy in MS or ALS including experimental, randomized, nonrandomized and exploratory studies; (2) written in English or Spanish; (3) adult population (over 18 years old). The initial search identified 836 articles of which we included 32 divided into four areas of intervention: fatigue-targeted interventions, cognitive interventions, physical interventions and others. Only 16 studies were carried out exclusively by occupational therapists. Most occupational therapy interventions are aimed at fatigue and physical rehabilitation. The majority of the studies in our review included MS patients, with little representation from the ALS population. These interventions have shown an improvement in perceived fatigue, manual dexterity, falls prevention and improvement in cognitive aspects such as memory, communication, depression and quality of life in the MS and ALS populations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Babu ◽  
Filippo Favretto ◽  
Alain Ibáñez de Opakua ◽  
Marija Rankovic ◽  
Stefan Becker ◽  
...  

AbstractAmyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with overlapping clinical features and the pathological hallmark of cytoplasmic deposits of misfolded proteins. The most frequent cause of familial forms of these diseases is a hexanucleotide repeat expansion in the non-coding region of the C9ORF72 gene that is translated into dipeptide repeat polymers. Here we show that proline/arginine repeat polymers derail protein folding by sequestering molecular chaperones. We demonstrate that proline/arginine repeat polymers inhibit the folding catalyst activity of PPIA, an abundant molecular chaperone and prolyl isomerase in the brain that is altered in amyotrophic lateral sclerosis. NMR spectroscopy reveals that proline/arginine repeat polymers bind to the active site of PPIA. X-ray crystallography determines the atomic structure of a proline/arginine repeat polymer in complex with the prolyl isomerase and defines the molecular basis for the specificity of disease-associated proline/arginine polymer interactions. The combined data establish a toxic mechanism that is specific for proline/arginine dipeptide repeat polymers and leads to derailed protein homeostasis in C9orf72-associated neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document