Climate change, winter wheat yield and soil erosion on the English south downs

1991 ◽  
Vol 37 (4) ◽  
pp. 415-433 ◽  
Author(s):  
D.T. Favis-Mortlock ◽  
R. Evans ◽  
J. Boardman ◽  
T.M. Harris
2019 ◽  
Vol 154 (1-2) ◽  
pp. 159-178 ◽  
Author(s):  
Chenyao Yang ◽  
Helder Fraga ◽  
Wim van Ieperen ◽  
Henrique Trindade ◽  
João A. Santos

2012 ◽  
Vol 150 (5) ◽  
pp. 537-555 ◽  
Author(s):  
S. THALER ◽  
J. EITZINGER ◽  
M. TRNKA ◽  
M. DUBROVSKY

SUMMARYThe main objective of the present crop simulation study was to determine the impact of climate change on the winter wheat production of a dry area situated in north-east Austria (Marchfeld region) based on the CERES-Wheat crop-growth simulation model associated with global circulation models (GCMs). The effects of some of the feasible regional- and farm-based adaptation measures (management options) on crop yield and water and nitrogen (N) balance under the climate scenarios were simulated. Climate scenarios were defined based on the ECHAM5, HadCM3 and NCAR PCM GCM simulations for future conditions (2021–50) as described in the Special Report on Emission Scenarios A1B (Nakicenovic & Swart 2000). The potential development, yield, water demand and soil N leaching were estimated for winter wheat and all of the defined climates (including rising CO2 levels) and management scenarios (soil cultivation, windbreaks and irrigation).The results showed that a warming of 2°C in the air temperature would shorten the crop-growing period by up to 20 days and would decrease the potential winter wheat yield on nearly all of the soil types in the region. Particularly, high-yield reductions were projected for light-textured soils such as Parachernozems. A change from ploughing to minimum tillage within the future scenario would lead to an increase of up to 8% of the mean yield of winter wheat. This effect mainly resulted from improved water supply to the crop, associated with higher soil water storage capacity and decrease of unproductive water losses. Hedgerows, which reduce the wind speed, were predicted to have particularly positive effects on medium and moderately fine-textured soils such as Chernozems and Fluvisols. With both management changes, regional mean-yield level can be expected to be +4% in comparison with no management changes in the future conditions. Compared with the baseline period, water demand for the potential yield of winter wheat would require 6–37 mm more water per crop season (area-weighted average). The highest water demand would be on medium-textured soils, which make up the largest amount of area in the study region. Additionally, the effects of snow accumulation near hedgerows would further increase the yield, but would also lead to higher N leaching rates. However, specific management options, such as minimum tillage and hedgerows, could contribute towards reducing the increasing water demand.


2017 ◽  
Vol 207 ◽  
pp. 30-41 ◽  
Author(s):  
Qin Fang ◽  
Xiying Zhang ◽  
Suying Chen ◽  
Liwei Shao ◽  
Hongyong Sun

2019 ◽  
Vol 19(34) (1) ◽  
pp. 37-46
Author(s):  
Antoni Faber ◽  
Zuzanna Jarosz ◽  
Aleksandra Król

The aim of the study was to determine the expected yields, the efficiency of N (NUE) use, N leaching, N2O and NH3 emissions depending on climate change until 2050. The research was carried out using the DNDC model for the years 1991-2010, 2011-2030 and 2031-2050 as well as 10 locations in Poland. In the simulations, the crop rotation were considered: maize for grain - spring barley - winter rape - winter wheat, which was grown on light, medium and heavy soils, with fertilization of, respectively: 140, 90, 160 and 120 kg N ha-1. It was found that climate change can contribute to increase in the yield of maize (6-43%) and winter rape (2-8%), decreases in winter wheat yield (from -18 to -5%) and negligible changes in yields of spring barley. NUE will increase in the cultivation of maize (2-17%), it will decrease in winter wheat (3-22%) and spring barley (3-17%) crops and will not change in the case of winter oilseed rape. NUE changes and N losses did not affect the need to reduce nitrogen doses in the future cultivation of the studied plants.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiu Geng ◽  
Fang Wang ◽  
Wei Ren ◽  
Zhixin Hao

Exploring the impacts of climate change on agriculture is one of important topics with respect to climate change. We quantitatively examined the impacts of climate change on winter wheat yield in Northern China using the Cobb–Douglas production function. Utilizing time-series data of agricultural production and meteorological observations from 1981 to 2016, the impacts of climatic factors on wheat production were assessed. It was found that the contribution of climatic factors to winter wheat yield per unit area (WYPA) was 0.762–1.921% in absolute terms. Growing season average temperature (GSAT) had a negative impact on WYPA for the period of 1981–2016. A 1% increase in GSAT could lead to a loss of 0.109% of WYPA when the other factors were constant. While growing season precipitation (GSP) had a positive impact on WYPA, as a 1% increase in GSP could result in 0.186% increase in WYPA, other factors kept constant. Then, the impacts on WYPA for the period 2021–2050 under two different emissions scenarios RCP4.5 and RCP8.5 were forecasted. For the whole study area, GSAT is projected to increase 1.37°C under RCP4.5 and 1.54°C under RCP8.5 for the period 2021–2050, which will lower the average WYPA by 1.75% and 1.97%, respectively. GSP is tended to increase by 17.31% under RCP4.5 and 22.22% under RCP8.5 and will give a rise of 3.22% and 4.13% in WYPA. The comprehensive effect of GSAT and GSP will increase WYPA by 1.47% under RCP4.5 and 2.16% under RCP8.5.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Weiwei Liu ◽  
Weiwei Sun ◽  
Jingfeng Huang ◽  
Huayang Wen ◽  
Ran Huang

In the era of global climate change, extreme weather events frequently occur. Many kinds of agro-meteorological disasters that are closely related to environmental conditions (such as sunshine hours, temperature, precipitation, etc.) are witnessed all over the word. However, which factor dominates winter wheat production in the middle and lower reaches of the Yangtze River remains unresolved. Quantifying the key limiting meteorological factor could deepen our understanding of the impact of climate change on crops and then help us to formulate disaster prevention and mitigation measures. However, the relative role of precipitation, sunshine hours and maximum daily temperature in limiting winter wheat yield in the middle and lower reaches of the Yangtze River is not clear and difficult to decouple. In this study, we used statistical methods to quantify the effect of precipitation, maximum temperature and sunshine hours extremes on winter wheat (Triticum aestivum L.) yield based on long time-series, county-level yield data and a daily meteorological dataset. According to the winter wheat growing season period (October of the sowing year to May of the following year), anomaly values of cumulative precipitation, average sunshine hours and average daily maximum temperature are calculated. With the range of −3 σ to 3 σ of anomaly and an interval of 0.5 σ (σ is the corresponding standard deviation of cumulative precipitation, mean maximum temperature and mean sunshine hours, respectively), the corresponding weighted yield loss ratio (WYLR) represents the impact of this kind of climate condition on yield. The results show that excessive rainfall is the key limiting meteorological factor that can reduce winter wheat yield to −18.4% in the middle and lower reaches of the Yangtze River, while it is only −0.24% in extreme dry conditions. Moreover, yield loss under extreme temperature and sunshine hours are negligible (−0.66% for extremely long sunshine hours and −8.29% for extreme cold). More detailed analysis results show that the impact of excessive rainfall on winter wheat yield varies regionally, as it causes severe yield reductions in the Huai River basin and the middle to southern part with low elevation and rainy areas of the study area, while for drier areas in the Hubei province, there is even an increase in yield. Our results disclosed with observational evidence that excessive precipitation is the key meteorological limiting factor leading to the reduction in winter wheat yield in the middle and lower reaches of the Yangtze River. The knowledge of the possible impact of climate change on winter wheat yield in the study area allows policy-makers, agronomists and economists to better forecast a plan that differs from the past. In addition, our results emphasized the need for better understanding and further process-based model simulation of the excessive rainfall impact on crop yield.


2012 ◽  
Vol 151 (6) ◽  
pp. 757-774 ◽  
Author(s):  
B. LALIC ◽  
J. EITZINGER ◽  
D. T. MIHAILOVIC ◽  
S. THALER ◽  
M. JANCIC

SUMMARYOne of the main problems in estimating the effects of climate change on crops is the identification of those factors limiting crop growth in a selected environment. Previous studies have indicated that considering simple trends of either precipitation or temperature for the coming decades is insufficient for estimating the climate impact on yield in the future. One reason for this insufficiency is that changes in weather extremes or seasonal weather patterns may have marked impacts.The present study focuses on identifying agroclimatic parameters that can identify the effects of climate change and variability on winter wheat yield change in the Pannonian lowland. The impacts of soil type under past and future climates as well as the effect of different CO2 concentrations on yield formation are also considered. The Vojvodina region was chosen for this case study because it is a representative part of the Pannonian lowland.Projections of the future climate were taken from the HadCM3, ECHAM5 and NCAR-PCM climate models with the SRES-A2 scenario for greenhouse gas (GHG) emissions for the 2040 and 2080 integration periods. To calibrate and validate the Met&Roll weather generator, four-variable weather data series (for six main climatic stations in the Vojvodina region) were analysed. The grain yield of winter wheat was calculated using the SIRIUS wheat model for three different CO2 concentrations (330, 550 and 1050 ppm) dependent on the integration period. To estimate the effects of climatic parameters on crop yield, the correlation coefficient between crop yield and agroclimatic indices was calculated using the AGRICLIM software. The present study shows that for all soil types, the following indices are the most important for winter wheat yields in this region: (i) the number of days with water and temperature stress, (ii) the accumulated precipitation, (iii) the actual evapotranspiration (ETa) and (iv) the water deficit during the growing season. The high positive correlations between yield and the ETa, accumulated precipitation and the ratio between the ETa and reference evapotranspiration (ETr) for the April–June period indicate that water is and will remain a major limiting factor for growing winter wheat in this region. Indices referring to negative impact on yield are (i) the number of days with a water deficit for the April–June period and (ii) the number of days with maximum temperature above 25 °C (summer days) and the number of days with maximum temperature above 30 °C (tropical days) in May and June. These indices can be seen as indicators of extreme weather events such as drought and heat waves.


2013 ◽  
Vol 726-731 ◽  
pp. 4358-4361
Author(s):  
Jie Liu ◽  
Ben Lin Shi

The effects of climatic change on winter wheat yield in Shangqiu City are quantitatively analyzed with the predictive results of future climate change. The results show that winter wheat yield in Shangqiu City presented a fluctuated increase for overall trend. Principal component analysis indicates that air temperature, precipitation, evaporation and extreme temperatures are the main factors affecting winter wheat yield, and excessive evaporation and extremely-low temperatures are unfavorable for wheat production. The warm-and-wet climate in Shangqiu is beneficial for improvement of winter wheat production, while the cold-and-dry climate is unbeneficial.


Sign in / Sign up

Export Citation Format

Share Document