In vitro and in vivo manipulations of bacteriophage Mu DNA: Cloning of Mu ends and construction of mini-Mu's carrying selectable markers

Gene ◽  
1981 ◽  
Vol 13 (1) ◽  
pp. 37-46 ◽  
Author(s):  
George Chaconas ◽  
Frans J. de Bruijn ◽  
Malcolm J. Casadaban ◽  
James R. Lupski ◽  
T.Jesse Kwoh ◽  
...  
2004 ◽  
Vol 186 (14) ◽  
pp. 4575-4584 ◽  
Author(s):  
Mark Oram ◽  
Martin L. Pato

ABSTRACT The bacteriophage Mu genome contains a centrally located strong gyrase site (SGS) that is required for efficient prophage replication. To aid in studying the unusual properties of the SGS, we sought other gyrase sites that might be able to substitute for the SGS in Mu replication. Five candidate sites were obtained by PCR from Mu-like prophage sequences present in Escherichia coli O157:H7 Sakai, Haemophilus influenzae Rd, Salmonella enterica serovar Typhi CT18, and two strains of Neisseria meningitidis. Each of the sites was used to replace the natural Mu SGS to form recombinant prophages, and the effects on Mu replication and host lysis were determined. The site from the E. coli prophage supported markedly enhanced replication and host lysis over that observed with a Mu derivative lacking the SGS, those from the N. meningitidis prophages allowed a small enhancement, and the sites from the Haemophilus and Salmonella prophages gave none. Each of the candidate sites was cleaved specifically by E. coli DNA gyrase both in vitro and in vivo. Supercoiling assays performed in vitro, with the five sites or the Mu SGS individually cloned into a pUC19 reporter plasmid, showed that the Mu SGS and the E. coli or N. meningitidis sequences allowed an enhancement of processive, gyrase-dependent supercoiling, whereas the H. influenzae or Salmonella serovar Typhi sequences did not. While consistent with a requirement for enhanced processivity of supercoiling for a site to function in Mu replication, these data suggest that other factors are also important. The relevance of these observations to an understanding of the function of the SGS is discussed.


2018 ◽  
Vol 201 (5) ◽  
Author(s):  
Shingo Nozaki ◽  
Hironori Niki

ABSTRACTEscherichia colihas an ability to assemble DNA fragments with homologous overlapping sequences of 15 to 40 bp at each end. Several modified protocols have already been reported to improve this simple and useful DNA cloning technology. However, the molecular mechanism by whichE. coliaccomplishes such cloning is still unknown. In this study, we provide evidence that thein vivocloning ofE. coliis independent of both RecA and RecET recombinases but is dependent on XthA, a 3′ to 5′ exonuclease. Here,in vivocloning ofE. coliby XthA is referred to asin vivoE. colicloning (iVEC). We also show that iVEC activity is reduced by deletion of the C-terminal domain of DNA polymerase I (PolA). Collectively, these results suggest the following mechanism of iVEC. First, XthA resects the 3′ ends of linear DNA fragments that are introduced intoE. colicells, resulting in exposure of the single-stranded 5′ overhangs. Then, the complementary single-stranded DNA ends hybridize each other, and gaps are filled by DNA polymerase I. Elucidation of the iVEC mechanism at the molecular level would further advance the development ofin vivoDNA cloning technology. Already we have successfully demonstrated multiple-fragment assembly of up to seven fragments in combination with an effortless transformation procedure using a modified host strain for iVEC.IMPORTANCECloning of a DNA fragment into a vector is one of the fundamental techniques in recombinant DNA technology. Recently, anin vitrorecombination system for DNA cloning was shown to enable the joining of multiple DNA fragments at once. Interestingly,E. colipotentially assembles multiple linear DNA fragments that are introduced into the cell. Improved protocols for thisin vivocloning have realized a high level of usability, comparable to that byin vitrorecombination reactions. However, the mechanism ofin vivocloning is highly controversial. Here, we clarified the fundamental mechanism underlyingin vivocloning and also constructed a strain that was optimized forin vivocloning. Additionally, we streamlined the procedure ofin vivocloning by using a single microcentrifuge tube.


2018 ◽  
Author(s):  
Shingo Nozaki ◽  
Hironori Niki

AbstractEscherichia colihas an ability to assemble DNA fragments with homologous overlapping sequences of 15-40 bp at each end. Several modified protocols have already been reported to improve this simple and useful DNA-cloning technology. However, the molecular mechanism by whichE. coliaccomplishes such cloning is still unknown. In this study, we provide evidence that thein vivocloning ofE. coliis independent of both RecA and RecET recombinase, but is dependent on XthA, a 3’ to 5’ exonuclease. Here, in vivocloning ofE. coliby XthA is referred to as iVEC (in vivo E. colicloning). Next, we show that the iVEC activity is reduced by deletion of the C-terminal domain of DNA polymerase I (PolA). Collectively, these results suggest the following mechanism of iVEC. First, XthA resects the 3′ ends of linear DNA fragments that are introduced intoE. colicells, resulting in exposure of the single-stranded 5′ overhangs. Then, the complementary single-stranded DNA ends hybridize each other, and gaps are filled by DNA polymerase I. Elucidation of the iVEC mechanism at the molecular level would further advance the development ofin vivoDNA-cloning technology. Already we have successfully demonstrated multiple-fragment assembly of up to seven fragments in combination with an effortless transformation procedure using a modified host strain for iVEC.ImportanceCloning of a DNA fragment into a vector is one of the fundamental techniques in recombinant DNA technology. Recently,in vitrorecombination of DNA fragments effectively joins multiple DNA fragments in place of the canonical method. Interestingly,E. colican take up linear double-stranded vectors, insert DNA fragments and assemble themin vivo.Thein vivocloning have realized a high level of usability comparable to that byin vitrorecombination reaction, since now it is only necessary to introduce PCR products intoE. colifor thein vivocloning. However, the mechanism ofin vivocloning is highly controversial. Here we clarified the fundamental mechanism underlyingin vivocloning of E. coli and also constructed anE. colistrain that was optimized forin vivocloning.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Conly L. Rieder ◽  
S. Bowser ◽  
R. Nowogrodzki ◽  
K. Ross ◽  
G. Sluder

Eggs have long been a favorite material for studying the mechanism of karyokinesis in-vivo and in-vitro. They can be obtained in great numbers and, when fertilized, divide synchronously over many cell cycles. However, they are not considered to be a practical system for ultrastructural studies on the mitotic apparatus (MA) for several reasons, the most obvious of which is that sectioning them is a formidable task: over 1000 ultra-thin sections need to be cut from a single 80-100 μm diameter egg and of these sections only a small percentage will contain the area or structure of interest. Thus it is difficult and time consuming to obtain reliable ultrastructural data concerning the MA of eggs; and when it is obtained it is necessarily based on a small sample size.We have recently developed a procedure which will facilitate many studies concerned with the ultrastructure of the MA in eggs. It is based on the availability of biological HVEM's and on the observation that 0.25 μm thick serial sections can be screened at high resolution for content (after mounting on slot grids and staining with uranyl and lead) by phase contrast light microscopy (LM; Figs 1-2).


Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


Author(s):  
U. Aebi ◽  
L.E. Buhle ◽  
W.E. Fowler

Many important supramolecular structures such as filaments, microtubules, virus capsids and certain membrane proteins and bacterial cell walls exist as ordered polymers or two-dimensional crystalline arrays in vivo. In several instances it has been possible to induce soluble proteins to form ordered polymers or two-dimensional crystalline arrays in vitro. In both cases a combination of electron microscopy of negatively stained specimens with analog or digital image processing techniques has proven extremely useful for elucidating the molecular and supramolecular organization of the constituent proteins. However from the reconstructed stain exclusion patterns it is often difficult to identify distinct stain excluding regions with specific protein subunits. To this end it has been demonstrated that in some cases this ambiguity can be resolved by a combination of stoichiometric labeling of the ordered structures with subunit-specific antibody fragments (e.g. Fab) and image processing of the electron micrographs recorded from labeled and unlabeled structures.


Sign in / Sign up

Export Citation Format

Share Document