Characterization of two genes encoding antigenically distinct type-1 fimbriae of Klebsiella pneumoniae

Gene ◽  
1988 ◽  
Vol 64 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Gerald-F. Gerlach ◽  
Steven Clegg
2013 ◽  
Vol 7 (12) ◽  
pp. 922-928 ◽  
Author(s):  
Nguyen Hoang Thu Trang ◽  
Tran Vu Thieu Nga ◽  
James I Campbell ◽  
Nguyen Trong Hiep ◽  
Jeremy Farrar ◽  
...  

Background: Extended-spectrum β-lactamases (ESBLs) are enzymes capable of hydrolyzing oxyimino-β-lactams and inducing resistance to third generation cephalosporins. The genes encoding ESBLs are widespread and generally located on highly transmissible resistance plasmids. We aimed to investigate the complement of ESBL genes in E. coli and Klebsiella pneumoniae causing nosocomial infections in hospitals in Ho Chi Minh City, Vietnam. Methodology: Thirty-two non-duplicate isolates of E. coli and Klebsiella pneumoniae causing nosocomial infections, isolated between March and June 2010, were subjected to antimicrobial susceptibility testing. All isolates were PCR-amplified to detect the blaSHV, blaTEM and blaCTX-M ESBL genes and subjected to plasmid analysis. Results: We found that co-resistance to multiple antimicrobials was highly prevalent, and we report the predominance of the blaCTX-M-15 and blaCTX-M-27 genes, located on highly transmissible plasmids ranging from 50 to 170 kb in size. Conclusions: Our study represents a snap shot of ESBL-producing enteric bacteria causing nosocomial infections in this setting. We suggest that antimicrobial resistance in nosocomial E. coli and Klebsiella pneumoniae is rampant in Vietnam and ESBL organisms are widespread. In view of these data and the dramatic levels of antimicrobial resistance reported in Vietnam we advocate an urgent review of antimicrobial use in the Vietnamese healthcare system.


2012 ◽  
Vol 80 (8) ◽  
pp. 2802-2815 ◽  
Author(s):  
Sébastien Crépin ◽  
Sébastien Houle ◽  
Marie-Ève Charbonneau ◽  
Michaël Mourez ◽  
Josée Harel ◽  
...  

ABSTRACTThepstSCAB-phoUoperon encodes the phosphate-specific transport system (Pst). Loss of Pst constitutively activates the Pho regulon and decreases bacterial virulence. However, specific mechanisms underlying decreased bacterial virulence through inactivation of Pst are poorly understood. In uropathogenicEscherichia coli(UPEC) strain CFT073, inactivation ofpstdecreased urinary tract colonization in CBA/J mice. Thepstmutant was deficient in production of type 1 fimbriae and showed decreased expression of thefimAstructural gene which correlated with differential expression of thefimB,fimE,ipuA, andipbAgenes, encoding recombinases, mediating inversion of thefimpromoter. The role offimdownregulation in attenuation of thepstmutant was confirmed using afimphase-locked-on derivative, which demonstrated a significant gain in virulence. In addition, thepstmutant was less able to invade human bladder epithelial cells. Since type 1 fimbriae contribute to UPEC virulence by promoting colonization and invasion of bladder cells, the reduced bladder colonization by thepstmutant is predominantly attributed to downregulation of these fimbriae. Elucidation of mechanisms mediating the control of type 1 fimbriae through activation of the Pho regulon in UPEC may open new avenues for therapeutics or prophylactics against urinary tract infections.


2005 ◽  
Vol 73 (8) ◽  
pp. 4626-4633 ◽  
Author(s):  
Mark A. Schembri ◽  
Jens Blom ◽  
Karen A. Krogfelt ◽  
Per Klemm

ABSTRACT The capsular polysaccharide and type 1 fimbriae are two of the major surface-located virulence properties associated with the pathogenesis of Klebsiella pneumoniae. The capsule is an elaborate polysaccharide matrix that encases the entire cell surface and provides resistance against many host defense mechanisms. In contrast, type 1 fimbriae are thin adhesive thread-like surface organelles that can extend beyond the capsular matrix and mediate d-mannose-sensitive adhesion to host epithelial cells. These fimbriae are archetypical and consist of a major building block protein (FimA) that comprises the bulk of the organelle and a tip-located adhesin (FimH). It is assumed that the extended major-subunit protein structure permits the FimH adhesin to function independently of the presence of a capsule. In this study, we have employed a defined set of K. pneumoniae capsulated and noncapsulated strains to show that the function of type 1 fimbriae is actually impeded by the concomitant expression of a polysaccharide capsule. Capsule expression had significant effects on two parameters commonly used to define FimH function, namely, yeast cell agglutination and biofilm formation. Our data suggest that this effect is not due to transcriptional/translational changes in fimbrial gene/protein expression but rather the result of direct physical interference. This was further demonstrated by the fact that we could restore fimbrial function by inhibiting capsule synthesis. It remains to be determined whether the expression of these very different surface components occurs simply via random events of phase variation or in a coordinated manner in response to specific environmental cues.


Author(s):  
Ziyi Liu ◽  
Ruifei Chen ◽  
Poshi Xu ◽  
Zhiqiang Wang ◽  
Ruichao Li

The spread of plasmid-mediated carbapenem-resistant clinical isolates is a serious threat to global health. In this study, an emerging NDM-encoding IncHI5-like plasmid from Klebsiella pneumoniae of infant patient origin was characterized, and the plasmid was compared to the available IncHI5-like plasmids to better understand the genetic composition and evolution of this emerging plasmid. Clinical isolate C39 was identified as K. pneumoniae and belonged to the ST37 and KL15 serotype. Whole genome sequencing (WGS) and analysis revealed that it harbored two plasmids, one of which was a large IncHI5-like plasmid pC39-334kb encoding a wide variety of antimicrobial resistance genes clustered in a single multidrug resistance (MDR) region. The blaNDM-1 gene was located on a ΔISAba125-blaNDM-1-bleMBL-trpF-dsbC structure. Comparative genomic analysis showed that it shared a similar backbone with four IncHI5-like plasmids and the IncHI5 plasmid pNDM-1-EC12, and these six plasmids differed from typical IncHI5 plasmids. The replication genes of IncHI5-like plasmids shared 97.06% (repHI5B) and 97.99% (repFIB-like) nucleotide identity with those of IncHI5 plasmids. Given that pNDM-1-EC12 and all IncHI5-like plasmids are closely related genetically, the occurrence of IncHI5-like plasmid is likely associated with the mutation of the replication genes of pNDM-1-EC12-like IncHI5 plasmids. All available IncHI5-like plasmids harbored 262 core genes encoding replication and maintenance functions and carried distinct MDR regions. Furthermore, 80% of them (4/5) were found in K. pneumoniae from Chinese nosocomial settings. To conclude, this study expands our knowledge of the evolution history of IncHI5-like plasmids, and more attention should be paid to track the evolution pathway of them among clinical, animal, and environmental settings.


2008 ◽  
Vol 76 (9) ◽  
pp. 4129-4136 ◽  
Author(s):  
Mélanie A. M. Cortes ◽  
Julien Gibon ◽  
Nathalie K. Chanteloup ◽  
Maryvonne Moulin-Schouleur ◽  
Philippe Gilot ◽  
...  

ABSTRACT IbeA in extraintestinal pathogenic Escherichia coli (ExPEC) strains was previously described for its role in invasion. Here we investigated the role of IbeA and IbeT, encoded by a gene located downstream of ibeA, in the adhesion of the avian ExPEC strain BEN2908 to human brain microvascular endothelial cells (HBMEC). The ΔibeA mutant was less adhesive to HBMEC than the wild-type strain BEN2908 was. Because strain BEN2908 also expresses type 1 fimbriae, we measured the adhesion specifically due to IbeA by comparing the adhesive properties of a Δfim derivative of strain BEN2908 to those of a double Δfim ΔibeA mutant. No differences were observed, indicating that the reduction of adhesion in BEN2908 ΔibeA could be due to a decrease in type 1 fimbria expression. We indeed showed that the decreased adhesion of BEN2908 ΔibeA was correlated with a decrease in type 1 fimbria expression. Accordingly, more bacteria had a fim promoter orientated in the off position in a culture of BEN2908 ΔibeA than in a culture of BEN2908. Expression of fimB and fimE, two genes encoding recombinases participating in controlling the orientation of the fim promoter, was decreased in BEN2908 ΔibeA. A reduction of type 1 fimbria expression due to a preferential orientation of the fim promoter in the off position was also seen in an ibeT mutant of strain BEN2908. We finally suggest a role for IbeA and IbeT in modulating the expression of type 1 fimbriae through an as yet unknown mechanism.


Sign in / Sign up

Export Citation Format

Share Document