scholarly journals The characterization of ESBL genes in Escherichia coli and Klebsiella pneumoniae causing nosocomial infections in Vietnam

2013 ◽  
Vol 7 (12) ◽  
pp. 922-928 ◽  
Author(s):  
Nguyen Hoang Thu Trang ◽  
Tran Vu Thieu Nga ◽  
James I Campbell ◽  
Nguyen Trong Hiep ◽  
Jeremy Farrar ◽  
...  

Background: Extended-spectrum β-lactamases (ESBLs) are enzymes capable of hydrolyzing oxyimino-β-lactams and inducing resistance to third generation cephalosporins. The genes encoding ESBLs are widespread and generally located on highly transmissible resistance plasmids. We aimed to investigate the complement of ESBL genes in E. coli and Klebsiella pneumoniae causing nosocomial infections in hospitals in Ho Chi Minh City, Vietnam. Methodology: Thirty-two non-duplicate isolates of E. coli and Klebsiella pneumoniae causing nosocomial infections, isolated between March and June 2010, were subjected to antimicrobial susceptibility testing. All isolates were PCR-amplified to detect the blaSHV, blaTEM and blaCTX-M ESBL genes and subjected to plasmid analysis. Results: We found that co-resistance to multiple antimicrobials was highly prevalent, and we report the predominance of the blaCTX-M-15 and blaCTX-M-27 genes, located on highly transmissible plasmids ranging from 50 to 170 kb in size. Conclusions: Our study represents a snap shot of ESBL-producing enteric bacteria causing nosocomial infections in this setting. We suggest that antimicrobial resistance in nosocomial E. coli and Klebsiella pneumoniae is rampant in Vietnam and ESBL organisms are widespread. In view of these data and the dramatic levels of antimicrobial resistance reported in Vietnam we advocate an urgent review of antimicrobial use in the Vietnamese healthcare system.

2020 ◽  
Vol 8 (10) ◽  
pp. 1593 ◽  
Author(s):  
Alexandra Irrgang ◽  
Simon H. Tausch ◽  
Natalie Pauly ◽  
Mirjam Grobbel ◽  
Annemarie Kaesbohrer ◽  
...  

Resistance to carbapenems due to carbapenemase-producing Enterobacteriaceae (CPE) is an increasing threat to human health worldwide. In recent years, CPE could be found only sporadically from livestock, but concern rose that livestock might become a reservoir for CPE. In 2019, the first GES carbapenemase-producing Escherichia coli from livestock was detected within the German national monitoring on antimicrobial resistance. The isolate was obtained from pig feces and was phenotypically resistant to meropenem and ertapenem. The isolate harbored three successive blaGES genes encoding for GES-1, GES-5 and GES-5B in an incomplete class-I integron on a 12 kb plasmid (pEC19-AB02908; Acc. No. MT955355). The strain further encoded for virulence-associated genes typical for uropathogenic E. coli, which might hint at an increased pathogenic potential. The isolate produced the third carbapenemase detected from German livestock. The finding underlines the importance CPE monitoring and detailed characterization of new isolates.


2018 ◽  
Vol 34 (3) ◽  
pp. 267-278
Author(s):  
Ashraf A. Abd El-Tawab ◽  
Mohamed G. Aggour ◽  
Fatma I. El- Hofy ◽  
Marwa M. Y. El- Mesalami

Author(s):  
Fatma Ben Abid ◽  
Clement K. M. Tsui ◽  
Yohei Doi ◽  
Anand Deshmukh ◽  
Christi L. McElheny ◽  
...  

AbstractOne hundred forty-nine carbapenem-resistant Enterobacterales from clinical samples obtained between April 2014 and November 2017 were subjected to whole genome sequencing and multi-locus sequence typing. Klebsiella pneumoniae (81, 54.4%) and Escherichia coli (38, 25.5%) were the most common species. Genes encoding metallo-β-lactamases were detected in 68 (45.8%) isolates, and OXA-48-like enzymes in 60 (40.3%). blaNDM-1 (45; 30.2%) and blaOXA-48 (29; 19.5%) were the most frequent. KPC-encoding genes were identified in 5 (3.6%) isolates. Most common sequence types were E. coli ST410 (8; 21.1%) and ST38 (7; 18.4%), and K. pneumoniae ST147 (13; 16%) and ST231 (7; 8.6%).


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S820-S820
Author(s):  
Bongyoung Kim ◽  
Ki Tae Kwon ◽  
Seong-yeol Ryu ◽  
Seong-Heon Wie ◽  
Hyun-uk Jo ◽  
...  

Abstract Background The aim of this study was to examine the change in characteristics of community-onset ciprofloxacin-resistant (CIP-R) E. coli isolates causing community-acquired acute pyelonephritis (CA-APN) in South Korea between 2010-2011 and 2017-2018. Methods E. coli samples isolated from the blood or urine were collected from patients with CA-APN aged 19 years and more who were admitted to 8 Korean hospitals from September 2017 to August 2018, prospectively. One isolate was collected from each patient. Phylogenetic typing, multilocus sequence typing (MLST), and molecular characterization of β-lactamase resistance and plasmid-mediated quinolone resistance (PMQR) determinants were performed. The data were compared with those from the previous study with same design in 2010-2011. Results A total of 346 and 300 isolates were collected during 2017-2018 and 2010-2011, respectively. Among them, 76 (22.0%) and 77 (25.7%) were CIP-R isolates. Significantly higher antimicrobial resistance against ampicillin (75.7% vs. 100%, P < 0.001) and cefotaxime (23.9% vs. 77.9%, P < 0.001) were observed for isolates in 2017-2018 compared to those in 2010-2011. The proportion of phylogenic group B2 had increased significantly (44.7% vs. 79.2%, P < 0.001). As for MLST, the proportion of ST131 (27.6% vs. 66.2%, P < 0.001) had increased while that of ST393 (18.4% vs. 3.9%, P =0.004) had decreased significantly. Higher proportion of CIP-R E. coli isolates in 2017-2018 had extended-spectrum β-lactamase (ESBL)/plasmid-mediated AmpC β-lactamase (PABL) (23.7% vs. 79.2%, P < 0.001) and PMQR determinant (11.8% vs. 40.8%, P < 0.001) compared to those in 2010-2011. Phlogenetic tree Analyzed by SplitsTree Conclusion Among uropathogenic CIP-R E. coli isolates in South Korea, ST131 predominance had become more prominent and the proportion of containing ESBL/PABL and/or PMQR determinants had increased. Disclosures All Authors: No reported disclosures


2010 ◽  
Vol 54 (7) ◽  
pp. 3043-3046 ◽  
Author(s):  
Stephen P. Hawser ◽  
Samuel K. Bouchillon ◽  
Daryl J. Hoban ◽  
Robert E. Badal ◽  
Rafael Cantón ◽  
...  

ABSTRACT From 2002 to 2008, there was a significant increase in extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli isolates in European intra-abdominal infections, from 4.3% in 2002 to 11.8% in 2008 (P < 0.001), but not for ESBL-positive Klebsiella pneumoniae isolates (16.4% to 17.9% [P > 0.05]). Hospital-associated isolates were more common than community-associated isolates, at 14.0% versus 6.5%, respectively, for E. coli (P < 0.001) and 20.9% versus 5.3%, respectively, for K. pneumoniae (P < 0.01). Carbapenems were consistently the most active drugs tested.


Author(s):  
Tanushree Barua Gupta ◽  
Malini Shariff ◽  
Thukral Ss ◽  
S.s Thukral

  Objective: Indiscriminate use of β-lactam antibiotics has resulted in the emergence of β-lactamase enzymes. AmpC β-lactamases, in particular, confer resistance to penicillin, first-, second-, and third-generation cephalosporins as well as monobactams and are responsible for antibiotic resistance in nosocomial pathogens. Therefore, this study was undertaken to screen nosocomial Escherichia coli isolates for the presence and characterization of AmpC β-lactamases. The study also envisaged on the detection of inducible AmpC β-lactamases and extended-spectrum β-lactamases (ESBLs) in AmpC β-lactamase-producing E. coli.Methods: A total of 102 clinical isolates of E. coli, were subjected to cefoxitin screening, and screen-positive isolates were further subjected to inhibitor-based detection method, phenotypic confirmatory test, disc antagonism test, polymerase chain reaction (PCR), and isoelectric focusing (IEF).Results: In this study, 33% of E. coli were resistant to cefoxitin, of which 35% were found to be positive for AmpC β-lactamase by inhibitor-based phenotypic test. Of the AmpC-positive isolates, 83% were positive for ESBLs, whereas 25% were producing inducible AmpC β-lactamases. PCR and IEF showed CIT and EBC types of AmpC β-lactamases present in the tested isolates.Conclusion: Our study showed the presence of inducible AmpC enzymes and ESBLs in E. coli isolates and PCR identified more isolates to be AmpC producers.


2021 ◽  
Vol 11 (3) ◽  
pp. 650-658
Author(s):  
Mohammed Yahia Alasmary

Background: To explore the prevalence of urinary tract infections (UTIs) among female patients in the Najran region of Saudi Arabia and determine their antimicrobial resistance pattern. Methods: This study was conducted on 136 urine samples collected from outpatient departments (OPDs) of the different government hospitals in the Najran region of Saudi Arabia. Over one year, the results of susceptibility testing reports of outpatient midstream urine samples from three government hospitals were prospectively evaluated. Results: Of 136 urine samples, only 123 (90.45%) were found to show significant growth for UTIs, from which 23 different uropathogens were identified. Escherichia coli (58.5%) was the most commonly isolated organism, followed by Klebsiella pneumoniae (8.1%). The isolated microorganism showed increased resistance patterns from 3.3% to 62.6%, with an overall resistance of 27.19%. Meropenem was the most effective antimicrobial, followed by amikacin and ertapenem (0.47%, 0.91%, and 1.5% resistance, respectively). At the same time, ampicillin and cephazolin were the least (62.6% and 59.5% resistance, respectively) effective. Overall, eleven (8.94%) uropathogens isolates were ESBLs, among which there were eight (6.5%) Escherichia coli, one (0.81%) Klebsiella pneumoniae, one (0.81%) Klebsiella oxytoca, and one (0.81%) Citrobacter amalonaticus. Conclusions: E. coli remains the most commonly isolated causative uropathogens, followed by Klebsiella species. The prevalence of pathogenic E. coli and Klebsiella species underscores the importance of developing cost-effective, precise, and rapid identification systems to minimize public exposure to uropathogens. Antibiotic susceptibility data revealed that most of the isolates were resistant to the majority of the antibiotics. The patients with UTIs in the Najran region of Saudi Arabia are at a high risk of antibiotic resistance, leading to significant problems in outpatient department (OPD) treatment outcomes and raising the alarm for the physician to change their empiric treatment.


2018 ◽  
Author(s):  
Christian Vinueza-Burgos ◽  
David Ortega-Paredes ◽  
Cristian Narváez ◽  
Lieven De Zutter ◽  
Jeannete Zurita

AbstractAntimicrobial resistance (AR) is a worldwide concern. Up to a 160% increase in antibiotic usage in food animals is expected in Latin American countries. The poultry industry is an increasingly important segment of food production and contributor to AR. The objective of this study was to evaluate the prevalence, AR patterns and the characterization of relevant resistance genes in Extended Spectrum β-lactamases (ESBL) and AmpC E. coli from large poultry farms in Ecuador. Sampling was performed from June 2013 to July 2014 in 6 slaughterhouses that slaughter broilers from 115 farms totaling 384 flocks. Each sample of collected caeca was streaked onto TBX agar supplemented with cefotaxime (3 mg/l). In total, 176 isolates were analyzed for antimicrobial resistance patterns by the disk diffusion method and for blaCTX-M, blaTEM, blaCMY, blaSHV, blaKPC, and mcr-1 by PCR and sequencing. ESBL and AmpC E. coli were found in 362 flocks (94.3%) from 112 farms (97.4%). We found that 98.3% of the isolates were multi-resistant to antibiotics. Low resistance was observed for ertapenem and nitrofurantoin. The most prevalent ESBL genes were the blaCTX-M (90.9%) blaCTX-M-65, blaCTX-M-55 and blaCTX-M-3 alleles. Most of the AmpC strains presented the blaCMY-2 gene. Three isolates showed the mcr-1 gene. Poultry production systems represent a hotspot for antimicrobial resistance in Ecuador, possibly mediated by the extensive use of antibiotics. Monitoring this sector in national and regional plans of antimicrobial resistance surveillance should therefore be considered.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yasmine H. Tartor ◽  
Norhan K. Abd El-Aziz ◽  
Rasha M. A. Gharieb ◽  
Hend M. El Damaty ◽  
Shymaa Enany ◽  
...  

Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54–0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.


2018 ◽  
Author(s):  
Krithika Rajagopalan ◽  
Jonathan Dworkin

AbstractIn bacteria, signaling phosphorylation is thought to occur primarily on His and Asp residues. However, phosphoproteomic surveys in phylogenetically diverse bacteria over the past decade have identified numerous proteins that are phosphorylated on Ser and/or Thr residues. Consistently, genes encoding Ser/Thr kinases are present in many bacterial genomes such asE. coli,which encodes at least three Ser/Thr kinases. Since Ser/Thr phosphorylation is a stable modification, a dedicated phosphatase is necessary to allow reversible regulation. Ser/Thr phosphatases belonging to several conserved families are found in bacteria. One family of particular interest are Ser/Thr phosphatases which have extensive sequence and structural homology to eukaryotic Ser/Thr PP2C phosphatases. These proteins, called eSTPs (eukaryotic-like Ser/Thr phosphatases), have been identified in a number of bacteria, but not inE. coli.Here, we describe a previously unknown eSTP encoded by anE. coliORF,yegK,and characterize its biochemical properties including its kinetics, substrate specificity and sensitivity to known phosphatase inhibitors. We investigate differences in the activity of this protein in closely relatedE. colistrains. Finally, we demonstrate that this eSTP acts to dephosphorylate a novel Ser/Thr kinase which is encoded in the same operon.ImportanceRegulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria including the model Gram-negative bacteriumE. colidemonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thrphosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


Sign in / Sign up

Export Citation Format

Share Document