Nerve growth factor activation of differentiation programs in neuronal and non-neuronal cell lines from amphibians to mammals

1985 ◽  
Vol 3 (4) ◽  
pp. 413-413 ◽  
Author(s):  
Rita Levi-Montalcini
2019 ◽  
Vol 9 (8) ◽  
pp. 204 ◽  
Author(s):  
Marina Sycheva ◽  
Jake Sustarich ◽  
Yuxian Zhang ◽  
Vaithinathan Selvaraju ◽  
Thangiah Geetha ◽  
...  

We have previously shown that the expression of pro-nerve growth factor (proNGF) was significantly increased, nerve growth factor (NGF) level was decreased, and the expression of p75NTR was enhanced in Alzheimer’s disease (AD) hippocampal samples. NGF regulates cell survival and differentiation by binding TrkA and p75NTR receptors. ProNGF is the precursor form of NGF, binds to p75NTR, and induces cell apoptosis. The objective of this study is to determine whether the increased p75NTR expression in AD is due to the accumulation of proNGF and Rho kinase activation. PC12 cells were stimulated with either proNGF or NGF. Pull-down assay was carried out to determine the RhoA kinase activity. We found the expression of p75NTR was enhanced by proNGF compared to NGF. The proNGF stimulation also increased the RhoA kinase activity leading to apoptosis. The expression of active RhoA kinase was found to be increased in human AD hippocampus compared to control. The addition of RhoA kinase inhibitor Y27632 not only blocked the RhoA kinase activity but also reduced the expression of p75NTR receptor and inhibited the activation of JNK and MAPK induced by proNGF. This suggests that overexpression of proNGF in AD enhances p75NTR expression and activation of RhoA, leading to neuronal cell death.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2662-2669 ◽  
Author(s):  
SC Bischoff ◽  
CA Dahinden

Abstract Nerve growth factor (NGF) is a neurotrophic cytokine known to regulate the survival and function of peripheral and central neuronal cells. Recently, the spectrum of action could be extended to non-neuronal cell types such as rat mast cells and human B lymphocytes. The present study shows that NGF affects the function of mature human basophils isolated from the peripheral blood of healthy donors. Both murine NGF 7S and recombinant human NGF beta enhance histamine release and strongly modulate the formation of lipid mediators by basophils in response to various stimuli. This priming effect of NGF on basophils occurs rapidly within 10 to 15 minutes of preincubation, is dose-dependent, and requires similarly low concentrations (1 to 40 pmol/L) of human NGF beta as the induction of neurite outgrowth in ganglion cells. Cell fractionation studies indicate that NGF acts directly on human basophils without an involvement of other cell types, suggesting the presence of high-affinity NGF receptors on basophils. NGF by itself (up to 4 nmol/L of human NGF beta) does not induce the release of inflammatory mediators directly. The effect of human NGF on basophil mediator release is similar to that of the hematopoietic growth factors interleukin-3, interleukin-5, and granulocyte-macrophage colony- stimulating factor. The present study further demonstrates that NGF acts as a pleiotropic cytokine at the interface between the nervous and the immune system, and that NGF may be involved in inflammatory processes and hypersensitivity reactions.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2905-2912 ◽  
Author(s):  
Francesca Pica ◽  
Antonio Volpi ◽  
Annalucia Serafino ◽  
Marzia Fraschetti ◽  
Ornella Franzese ◽  
...  

High levels of nerve growth factor (NGF) are found in sera from individuals infected with human herpesvirus 8 (HHV-8). BC-1 and BCBL-1 cells are primary effusion lymphoma–derived B-cell lines; BC-1 cells are infected by HHV-8 and the Epstein-Barr virus (EBV), and BCBL-1 cells are infected only by HHV-8. Both cells express NGF receptors and produce NGF, whereas RAMOS cells (a B-cell line that is negative for HHV-8 and EBV) express NGF receptors but do not produce detectable NGF. Neutralization of endogenous NGF results in cell growth inhibition and apoptosis in BCBL-1 cells and, to a minor extent, in BC-1 cells. When the HHV-8 lytic cycle is induced in BCBL-1 cells by tetradecanoyl phorbol acetate (TPA), an initial reduction of endogenous NGF production is observed, and many cells undergo apoptosis. However, at 48 hours, TPA-treated cells produce significantly more NGF than untreated controls, and a subsequent recovery of cell viability is observed. Consistent with this finding, the addition of exogenous NGF or anti-NGF antibodies to TPA-treated cells reduces or increases, respectively, the rate of apoptosis in response to TPA. Finally, electron microscopy of TPA-treated BCBL-1 cells shows that the addition of exogenous NGF increases the number of cells producing and releasing complete virions as compared with the controls (25% versus 5%). On the contrary, NGF neutralization leads to the production of defective viral progeny in about 2% of cells. These data indicate that NGF is essential for both cell survival and virus maturation in HHV-8–infected cell lines.


1986 ◽  
Vol 64 (11) ◽  
pp. 1153-1159 ◽  
Author(s):  
Juta K. Reed ◽  
Diane England

We have studied the development of the action potential Na+ channels in PC12 cells, an established line that has been useful as a model for neuronal differentiation. In continuous culture PC12 cells, although electrically inexcitable, nevertheless have a low level of Na+ channels as judged by the increase in 22Na+ uptake in the presence of veratridine and scorpion toxin. These two neurotoxins have been shown to promote activation of Na+ channels in a variety of electrically excitable cells. Following treatment with nerve growth factor (NGF), conditions which induce differentiation to an electrically excitably neuronal-cell type, the neurotoxin-activated 22Na+ uptake increases approximately 12-fold, on a per cell basis, reaching a maximum in 12–16 days. The dose–response curves for veratridine and scorpion toxin are unchanged by NGF treatment (K0.5 for veratridine, 18–14 μM; K0.5 for scorpion toxin, 120–96 nM). Na+ channels in both undifferentiated and differentiated cells are tetrodotoxin sensitive and NGF treatment has no effect on the inhibition constant (Ki, 10–12 nM). Na+ channel sites were measured directly by the specific binding of [3H]saxitoxin. In NGF-treated cells, the saxitoxin receptor density reaches 154 fmol/mg protein (Kd, 1.3 nM), a level comparable to other excitable cells. Levels in control cells were too low to measure accurately. These findings show that NGF treatment of PC12 cells leads to a substantial increase in the expression of neurotoxin-sensitive Na+ channels. Furthermore, these channels are pharmacologically similar, if not identical, to those which exist in undifferentiated cells and therefore do not appear to result from the conversion of preexisting channels.


1997 ◽  
Vol 323 (1) ◽  
pp. 245-250 ◽  
Author(s):  
Pasqualina BUONO ◽  
Lisa de CONCILIIS ◽  
Paola IZZO ◽  
Francesco SALVATORE

A DNA region located at around -200 bp in the 5´ flanking region (region D) of the human brain-type fructose-bisphosphate aldolase (aldolase C) gene has been analysed. We show by transient transfection assay and electrophoretic-mobility-shift assay (EMSA) that the binding of transcriptional activators to region D is much more efficient (80% versus 30%) in human neuroblastoma cells (SKNBE) than in the non-neuronal cell line A1251, which contains low levels of aldolase C mRNA. The sequence of region D, CAAGGTCA, is very similar to the AAAGGTCA motif present in the mouse steroid 21-hydroxylase gene; the latter motif binds nerve-growth-factor-induced B factor (NGFI-B), which is a member of the thyroid/steroid/retinoid nuclear receptor gene family. Competition experiments in EMSA and antibody-directed supershift experiments showed that NGFI-B is involved in the binding to region D of the human aldolase C gene. Furthermore, the regulation of the aldolase C gene (which is the second known target of NGFI-B) expression during development parallels that of NGFI-B.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Cheryl L. Cragg ◽  
Janet C. MacKinnon ◽  
Bettina E. Kalisch

Nitric oxide (NO) modulates nerve-growth-factor- (NGF-) mediated signaling and gene expression. In the present paper, the role of NO in NGF-mediated Akt activation in PC12 and IMR32 cells was investigated. Cells were treated with NGF (50 ng/mL) in the presence or absence of NO synthase (NOS) inhibitors and Akt phosphorylation assessed by western blot analysis. In both cell lines, Akt was phosphorylated within 15 min of NGF treatment. In PC12 cells, this level of phosphorylation was sustained for 60 min, while in IMR32 cells, the activation decreased after 30 min of NGF treatment. The nonselective NOS inhibitor Nω-nitro-L-arginine methylester (L-NAME; 20 mM) had no effect on NGF-mediated Akt phosphorylation in PC12 cells but in combination with NGF, the iNOS selective inhibitor s-methylisothiourea (S-MIU; 2.0 mM) maintained Akt phosphorylation up to 2 h. In IMR32 cells, both L-NAME and S-MIU prolonged the activation of Akt. Pretreatment with 50 μM U0126, a MAP kinase pathway inhibitor, also increased the activation of Akt in both cell lines. These data suggest that NO modulates the duration of phosphorylation of Akt in response to NGF and that this effect may, in part, be mediated by the effects of NO on the Ras-MAP kinase pathway.


Sign in / Sign up

Export Citation Format

Share Document